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Abstract. This paper studies the existence of 2-torsion in instanton Floer homology with Z coefficients

for closed 3-manifolds and singular knots. First, we show that the non-existence of 2-torsion in the
framed instanton Floer homology I7pS3

npKq;Zq of any nonzero integral n-surgery along a knot K

in S3 would imply that K is fibered. Also, we show that I7pS3
r pKq;Zq for any nontrivial K with

r “ 1, 1{2, 1{4 always has 2-torsion. These two results indicate that the existence of 2-torsion is
expected to be a generic phenomenon for Dehn surgeries along knots. Second, we show that for

genus-one knots with nontrivial Alexander polynomials and for unknotting-number-one knots, the
unreduced singular instanton knot homology I7pS3,K;Zq always has 2-torsion. Finally, some crucial
lemmas that help us demonstrate the existence of 2-torsion are motivated by analogous results in

Heegaard Floer theory, which may be of independent interest. In particular, we show that, for a knot

K in S3, if there is a nonzero rational number r such that the dual knot rKr inside S3
r pKq is Floer

simple, then S3
r pKq must be an L-space and K must be an L-space knot.

1. Introduction

1.1. Statement of results. In this paper, we study 2-torsion in various versions of instanton Floer
homology with Z coefficients. The first version is the framed instanton Floer homology I7 pY q for a
3-manifold Y introduced by Kronheimer and Mrowka [KM11b]. This version, over C, is conjectured
to be isomorphic to yHF pY q, the hat version of the Heegaard Floer homology of Y , introduced by
Ozsváth and Szabó in [OS04]. Currently, with Z coefficients, there is no torsion observed for any known

examples of yHF pY ;Zq; however, on the other hand, in this paper, we present abundant examples where
I7 pY ;Zq has 2-torsion, indicating that the two theories behave quite distinctly when working over Z or
F2 “ Z{p2Zq instead of fields of characteristic 0.

Theorem 1.1. Suppose K Ă S3 is a nontrivial knot (i.e., not the unknot). Then I7
`

S3
r pKq;Z

˘

for
r “ 1, 1{2, 1{4 all have 2-torsion.

Theorem 1.2. Suppose K Ă S3 is a knot. If there exists n P Zzt0u such that I7
`

S3
npKq;Z

˘

has no
2-torsion, then K must be a fibered knot.

The fibered result in Theorem 1.2 is expected to be far from sharp. Indeed, we make the following
conjecture, in which KHIpS3,Kq “ KHIpS3,K;Cq is the (sutured) instanton knot homology over C
constructed in [KM10b], which is also conjectured to be isomorphic to the hat version of Heegaard knot

Floer homology, {HFKpS3,K;Cq.

Conjecture 1.3. Suppose K Ă S3 is a knot and p{q P Qzt0u such that I7

´

S3
p{qpKq;Z

¯

has no

2-torsion. Then S3
p{qpKq must be an instanton L-space, i.e.,

dim I7
´

S3
p{qpKq;C

¯

“ |H1pS3
p{qpKq;Z| “ |p|,

and K is an instanton L-space knot. Consequently, we know K is fibered and strongly quasi-positive
and |p{q| ą 2gpKq ´ 1 (cf. [BS23, Theorem 1.15] and [LY21, Theorem 1.17]).

To the authors’ knowledge, all known examples of 3-manifolds Y with no 2-torsion in I7 pY ;Zq are
instanton L-spaces (cf. Appendix A). Moreover, if I7

`

S3
npKq;Z

˘

has no 2-torsion for a positive integer
n, then we will show in Proposition 3.9 that

KHIpS3
npKq, rKnq – I7

`

S3
npKq;C

˘

,
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where rKn is the dual knot in the surgery manifold. Meanwhile, we establish the following theorem
in Heegaard Floer theory via the immersed curve invariant [HRW24, HRW22], which is currently not
available in the instanton theory and of independent interest.

Theorem 1.4. Suppose K Ă S3. If there exists p{q P Qzt0u satisfying

dim {HFKpS3
p{qpKq, rKp{q;F2q “ dim yHF pS3

p{qpKq;F2q,

then both dimensions must equal to |H1pS3
p{qpKq;Zq| “ |p| and hence K is a (Heegaard Floer) L-

space knot. Consequently, we know K is fibered and strongly quasi-positive [OS05, Ni07, Hed10], and
|p{q| ą 2gpKq ´ 1 [RR17, Corollary 3.6].

In addition to the above theorems that confirm the existence of 2-torsion for closed 3-manifold case,
we also prove the following results for the unreduced singular instanton knot homology of a knot K
inside a 3-manifold Y , which is denoted by I7 pY,Kq and was constructed by Kronheimer-Mrowka
[KM11a].

Proposition 1.5. If K Ă S3 is a knot of genus one and with Alexander polynomial ∆Kptq ‰ 1, then
I7

`

S3,K;Z
˘

has 2-torsion.

Proposition 1.6. If K Ă S3 is a knot with unknotting number one, then I7
`

S3,K;Z
˘

has 2-torsion.

Proposition 1.7. If K Ă S3 is a non-trivial knot, then I7

´

S3
1pKq, rK1;Z

¯

has 2-torsion.

Theorems 1.1 and 1.2, together with Propositions 1.5, 1.6 and 1.7, collectively suggest that the
presence of 2-torsion in instanton Floer homology constitutes a prevalent phenomenon. Note that, in
addition to the above new results about the 2-torsion for unreduced singular instanton Floer homology,
it has already been known to experts that I7

`

S3,K;Z
˘

for quasi-alternating knots has 2-torsion. See
Appendix B.

While the homology groups associated to various coefficients are interconnected through the universal
coefficient theorem, these groups can exhibit distinctive behaviors: homology groups over C are
evidently integrated into a broader axiomatic framework of Floer theory; however, homology groups
over F2 become more wild and may demonstrate unique characteristics, thereby offering potential novel
applications.

One key property that characterizes this distinction between instanton Floer homology over C and F2

is the adjunction inequality, stated below specific to framed instanton homology over C for simplicity.

Theorem 1.8 ([BS23, Theorem 1.16]). Suppose X : Y1 Ñ Y2 is an oriented cobordism and there exists
an embedded surface Σ Ă X of genus at least one such that

Σ ¨ Σ ě 2gpΣq ´ 1.

Then I7 pXq “ 0 : I7 pY1;Cq Ñ I7 pY2;Cq.

The adjunction inequality is a powerful tool to regulate the behavior of framed instanton homology.
For example, Baldwin-Sivek’s dimension formula [BS21, Theorem 1.2] for framed instanton homology
of Dehn surgeries of knots in S3 is almost simply built on this theorem together with the surgery exact
triangle. Failure of Theorem 1.8 over F2 can be concluded from the following two facts.

Lemma 1.9. If Theorem 1.8 were true over F2 as well, then the Poincaré sphere P “ S3
1p31q would

satisfy the following condition: I7 pP ;F2q – F2.
1

Proof. Note that the trefoil knot K “ 31 has a genus-one Seifert surface. When performing integral
n-surgery along the trefoil, we obtain a trace cobordism

Xn : S3 Ñ S3
npKq.

1For the completeness of the paper, we state this result and present a proof, but we claim no originality of this fact.

The authors first heard about this fact from John A. Baldwin.
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The Seifert surface gets closed up by the core of the 2-handle in Xn, and we obtain a closed oriented
genus-one surface Σn Ă Xn with self-intersection number n. When n ě 1, the adjunction inequality
then implies that Xn induces the zero map. The map induced by Xn fits into an exact triangle (cf.
Lemma 2.2) in which the third term is I7

`

S3
n`1pKq;F2

˘

. Since I7
`

S3;F2

˘

– F2, we conclude that

dim I7
`

S3
1pKq;F2

˘

“ dim I7
`

S3
2pKq;F2

˘

´ 1 “ ¨ ¨ ¨ “ dim I7
`

S3
5pKq;F2

˘

´ 4.

Since S3
5pKq is a lens space, we know from Appendix A that dim I7

`

S3
5pKq;F2

˘

“ 5 and hence

dim I7 pP ;F2q “ dim I7
`

S3
1pKq;F2

˘

“ 1.

□

Proposition 1.10 (Bhat [Bha23, Theorem 1.4]). Let P denote the Poincaré sphere as above. We have

dim I7 pP ;F2q ě 3.

As mentioned above, the failure of the adjunction inequality implies that the dimension formula
in [BS21, Theorem 1.2] no longer holds true for F2. Using some partial vanishing result to re-
place the role played by the adjunction inequality, we can describe the behavior of the sequence
tdim I7

`

S3
npKq;F2

˘

unPZ for a knot K Ă S3 as in the following proposition.

Proposition 1.11. Suppose K Ă S3 is a knot, then the sequence tdim I7
`

S3
npKq;F2

˘

unPZ has one of
the following three shapes.

‚ V-shape, see Figure 1.
‚ W-shape, see Figure 1.
‚ Generalized W-shape, see Figure 2.

n
ν7,F2

´ pKq “ ν7,F2

` pKq
n

ν7,F2

´ pKq ν7,F2

` pKq

Figure 1. Left: V-shape. Right: W-shape.

n
ν7,F2

´ pKq ν7,F2

` pKq

Figure 2. Generalized W-shape.
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As shown in Figure 1 and Figure 2, we define two invariants:

ν7,F2

` pKq “ mintn | @k ą n, dim I7
`

S3
kpKq;F2

˘

“ dim I7
`

S3
k´1pKq;F2

˘

` 1u

and ν7,F2

´ pKq “ maxtn | @k ă n, dim I7
`

S3
kpKq;F2

˘

“ dim I7
`

S3
k`1pKq;F2

˘

` 1u.

We have the following.

Proposition 1.12. The invariants ν7,F2

˘ pKq are concordance invariants.

Remark 1.13. Indeed, the three cases in Proposition 1.11 can all be regarded as generalized W-shapes.
If we introduce the width of a generalized W-shape to be

wpKq “
ν7,F2

` pKq ´ ν7,F2

´ pKq

2
,

then the V-shape has width 0 and W-shape has width 1. By Proposition 1.12, the width of a knot

is also a concordance invariant. A direct computation will show that the unknot has ν7,F2

˘ “ ˘1 and
width 1.

One interesting observation about these two invariants is that, since Theorem 1.8 fails over F2, the
usual adjunction inequality that is expected for some gauge theoretic concordance invariants (e.g.,

the cousin ν7 invariant in [BS21] and the τ invariant in [OS03]) does not necessarily hold for ν7,F2

˘ pKq.
This means that these invariants have the potential to lead to applications beyond the limitation of
adjunction inequality.

1.2. Strategy of the proof. Our approach to proving the existence of 2-torsion for instanton Floer
homology over Z has a few ingredients involving the computation of the corresponding homology group
over C and F2. To quantify the existence of 2-torsion, for a (closed connected oriented) 3-manifold Y ,
we define

(1.1) t2 pY q “
1

2
pdim I7 pY ;F2q ´ dim I7 pY ;Cqq

The universal coefficient theorem implies that t2 pY q is always a non-negative integer, and I7 pY,Zq has
2-torsion if and only if t2 pY q ą 0.

To estimate t2 pY q, we need to estimate the dimensions of I7 pY q over F2 and C, respectively. The
estimation over F2 is based on a new exact triangle recently developed by Bhat [Bha23] in his thesis. The
estimation over C utilizes the dimension formula from Baldwin-Sivek [BS21] and the surgery formulae
[LY21, LY22b, LY22c] proved by the authors of the current paper. The connection between different
coefficients is from Kronheimer-Mrowka’s results about the reduced version of singular instanton knot
homology I6 pY,Kq. More precisely, from [KM19, Lemma 7.7] (see also [DS19, Corollary 8.7]) and
[KM11a, Proposition 1.4], for any knot K in a 3-manifold Y , we have

(1.2) dim I7 pY,K;F2q “ 2 dim I6 pY,K;F2q and dim I6 pY,K;Cq “ dimKHIpY,Kq

Hence the universal coefficient theorem implies

(1.3) dim I7 pY,K;F2q ě 2 dimKHIpY,Kq,

where the equality holds if and only if I6 pY,Kq has no 2-torsion.
As mentioned above, we also need to use the (sutured) instanton knot homology KHIpY,Kq. It

is a special case of sutured instanton homology SHIpM,γq for a balanced sutured manifold pM,γq

[KM10b], which is always defined over C, so we omit the coefficients for simplicity. If K is null-
homologous, there is a Z-grading on KHIpY,Kq [KM10a], usually called the Alexander grading. When
K Ă S3, Kronheimer-Mrowka [KM10b, Proposition 7.16] showed that the maximal nontrivial grading
of KHIpS3,Kq is the genus gpKq. Hence, we introduce the following notation.

(1.4) DtoppKq “ dimKHIpS3,K, gpKqq ě 1.

For a knot K Ă S3, we use rK1 Ă S3
1pKq to denote the dual knot of the 1-surgery. We will prove the

following crucial technical results in §3.
4



Lemma 1.14. Suppose K Ă S3 is a nontrivial knot, then

dimKHIpS3
1pKq, rK1q ě dim I7

`

S3
1pKq

˘

` 2DtoppKq.

Lemma 1.15. Suppose K Ă S3 is a knot. Suppose n ą 0 is an integer such that

(1.5) dimKHIpS3
npKq, rKnq “ dim I7

`

S3
npKq

˘

.

Then K must be fibered, V -shaped, and 0 ă ν7pKq “ 2τ 7pKq ´ 1 ă n, where the notions are from
[BS21].

It is worth mentioning that the proofs of Lemma 1.14 and Lemma 1.15 (as crucial technical inputs
to approach the main results of the paper) and our proposal of Conjecture 1.3 are all motivated by
the analogous questions and results from Heegaard Floer theory, and to establish these results in
Heegaard Floer theory, we also make essential use of the immersed curve invariant techniques developed
in [HRW24, HRW22]. We include discussion on Heegaard Floer theory in §5.

A knot rKn satisfying (1.5) is usually called Floer-simple [Hed11, §1.2]. Hence, we call K Ă S3 dually

Floer simple (cf. Definition 2.12) if one of its dual knots rKn is Floer simple. The fiberedness conclusion
is to the satisfaction of the applications in this paper, but we expect more restrictions to the dually
Floer simple knot (cf. Theorem 1.4). Currently known examples of dually Floer simple knots are only
instanton L-space knots whose properties were studied in [BS23] and [LY21].

With the help of Lemmas 1.14 and 1.15, we can bound t2
`

S3
r pKq

˘

for various surgery slopes r “ p{q

from below. Simply put, the gap between dimKHIpS3
npKq, rKnq and dim I7

`

S3
npKq

˘

characterizes the

non-vanishing of t2
`

S3
r pKq

˘

.
Finally, we mention the following dimension inequality, which directly implies Proposition 1.6. It is

of independent interest and provides a new obstruction to unknotting-number-one knots. The proof is
a nice application of the large surgery formula developed in [LY21].

Theorem 1.16. If J Ă S3 is a knot with unknotting number one, then

dim I7
`

S3, J ;C
˘

ď dim I6
`

S3, J ;C
˘

` 3 “ dimKHIpS3, Jq ` 3.

Proof of Proposition 1.6. From Theorem 1.16 and the inequality (1.3), if dimKHIpS3,Kq ą 3 then

dim I7
`

S3,K;F2

˘

´ dim I7
`

S3,K;C
˘

ě 2 dimKHIpS3,Kq ´ pdimKHIpS3,Kq ` 3q ą 0

and I7
`

S3,K;Z
˘

has 2-torsion. From [BS22b, Theorem 1.6], we know knots with dim I6
`

S3,K;C
˘

ď 3
must be either the unknot or the trefoil 31. The unknot has unknotting number zero and it is already
known from Theorem B.2 that I7

`

S3,K;Z
˘

has 2-torsion for K “ 31. □

Acknowledgement. The authors thank Deeparaj Bhat for the valuable discussion in their joint work
(under preparation). A preliminary version of Theorem 1.1 was established under the discussion with
Bhat. The second author thanks Yi Ni for helpful communication, which motivates Lemma 1.14 and
Theorem 1.4. The authors thank Steven Sivek to pointing out the case of 1{4-surgery in Theorem 1.1.
The authors also thank Peter Kronheimer and Jake Rasmussen for helpful conversations.

2. Preliminaries

2.1. Basic setups. Unless otherwise mentioned, we will always let Y be a closed connected oriented
3-manifold and K to be a framed knot in Y . If K is null-homologous, then the framing by default comes
from any Seifert surface of K. If Y “ S3, we may omit it in the notion for various Floer homologies.
We will use K to denote either a commutative ring with a unit or a field. We write N “ t0, 1, . . . u for
natural numbers and F2 “ Z{p2Zq.

For any smooth unoriented 1-submanifold (called a 1-cycle or the bundle data) λ Ă Y and any
basepoint pt in Y , Kronheimer-Mrowka constructed the framed instanton homology I7 pY, λq in the
following three ways.

(1) From [KM11a, §4.3], they considered the singular instanton homology IpY,H, λ\ λ0q, where H is
a Hopf link in the neighborhood of pt, and λ0 is a standard arc connecting two components of H.
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(2) From [KM11b, §1.2] (see also [KM11a, §5.4]), they considered the ordinary instanton Floer homology
IpY#T 3, λ \ S1qψ, where the connected sum is made at pt, S1 is a standard circle in T 3, and
ψ Ă H1pY#T 3;F2q is the 2-element subgroup generated by the dual torus R of S1 in T 3, and we
take the quotient of the usual configuration space by this extra 2-element group when constructing
instanton Floer homology.

(3) From [KM10b, §7.6], they considered the sutured instanton knot homology KHIpY, U, λq of an
unknot U in the neighborhood of pt, which is ultimately defined to be the sutured instanton homology
SHIpY zNpUq, γU “ µU Y p´µU q, λq for an oriented meridian µU of U (see more discussion in §2.3).
This is only defined over C and on the homology level since the construction uses the generalized
eigenspace decomposition of some operators on the ordinary instanton Floer homology (with extra
bundle data from λ). As an isomorphism class in [KM10b, §7] or as a projectively transitive
system by Baldwin-Sivek’s naturality result [BS15, §9], the space KHIpY, U, λq is identical to
SHIpY zNpptq, S1, λq, which is another definition of I7 pY, λ;Cq.

Note that the first two definitions are over Z and can be generalized to a 3-manifold Y with a singular
knot K, which we denote by I7 pY,K, λq. The third definition can also be generalized to such a pY,Kq

by the work of Xie-Zhang [XZ19], again over C. The first two definitions have Z{4 homological grading,
while the third only has a canonical Z{2 homological grading from [KM10a, §2.6].

Note that the isomorphism class of the Floer homology only depends on the homology class
rλs P H1pY ;F2q since it represents the bundle data for an SOp3q bundle. When λ “ H, we simply
write I7 pY q.

From [KM11a, §5.4], the first two definitions are isomorphic via Floer’s excision cobordism, hence
the isomorphism intertwines with the cobordism map supported in Y zNpptq naturally. Also from
[KM11a, §5.4], the second definition is isomorphic to the third definition via a special choice of closure
in the construction of KHIpY,U, λq, which is exactly pY#T 3, R, λ \ S1q. Since gpRq “ 1, by [BS23,
Theorem 2.5] (see also [Frø02, Lemma 4]), we know µpptq2 “ 4 for the µ map in the construction of
KHIpY, U, λq, and then the isomorphism can be made to intertwine with the cobordism map. Note
that Baldwin-Sivek’s naturality result [BS15] only works for closures of genus larger than one, while
the relation between closures of genus one and larger than one remains to be isomorphism rather than
canonical isomorphism. Hence, the best result we can state about the cobordism map is that, for any
fixed closure and any fixed isomorphism between the special closure above and the fixed closure, the
isomorphism intertwines the cobordism map supported in Y zNpUq. Similar isomorphism results hold
when there is a singular knot K by Floer’s excision theorem (for sutured version, see [XZ19, Remark
7.8]). All isomorphisms above respect the homological gradings.

2.2. The exact triangles. We will use various exact triangles to establish the main results of this
paper. We start with the surgery exact triangle.

Lemma 2.1 ([Sca15]). Suppose K Ă Y is a framed knot in a 3-manifold Y and suppose λ Ă Y is a
1-cycle. Let µ Ă Y be a push-off of the meridian of K. Then there is an exact triangle

I7 pY0pKq, λY µ;Kq // I7 pY1pKq, λ;Kq

vv
I7 pY, λ;Kq

hh

Note that the three 3-manifolds in the triangle in Lemma 2.1 are cyclic, which means that we can
choose any of the three manifolds as the one we start with, and obtain different bundle data in [Sca15,
Figure 1]. Alternatively, one could add the extra bundle data µ to all of the three 3-manifolds (not just
restricted to 0-surgery). Also, since the (isomorphism class of) Floer homology only depends on the
homology class of λ mod 2, one could start with a possibly different 1-cycle λ1 representing the same
homology class as λ on Y and Y1pKq but cancels µ on Y0pKq. Hence, we obtain a variation of Lemma
2.1.

6



Lemma 2.2 ([BS21, §2.2]). Suppose K Ă Y is a framed knot in a 3-manifold Y and suppose λ Ă Y is
a 1-cycle. Then there is an exact triangle

I7 pY0pKq, λ;Kq // I7 pY1pKq, λ;Kq

vv
I7 pY, λ;Kq

hh

Another algebraic manipulation of Lemma 2.1 is that, in addition to the original triangle, one could
increase the framing of the knot by 1 and apply the triangle again. Then we obtain the following
diagram

I7 pY0pKq, λ;Kq // I7 pY1pKq, λ;Kq

g

��

// I7 pY2pKq, λ;Kq

tt
I7 pY, λ1;Kq

f

OOjj

Here λ1 can be either λ or λY µ. An application of [OSS15, Lemma A.3.10] yields the following.

Lemma 2.3. Suppose K Ă Y is a framed knot in a 3-manifold Y and suppose λ Ă Y is a 1-cycle.
Then there is an exact triangle

I7 pY0pKq, λ;Kq // I7 pY2pKq, λ;Kq

uu
H˚pConepg ˝ fqq

ii

where H˚pConepg ˝ fqq is the homology of the mapping cone of the composition g ˝ f .

In addition to the above triangles, there is also an exact triangle relating the framed instanton
homology of closed 3-manifolds to singular instanton knot homology of knots.

Lemma 2.4 (Bhat [Bha23, Theorem 1.1]). Suppose K Ă Y is a framed knot in a 3-manifold Y and
suppose λ Ă Y is a 1-cycle. Then there is an exact triangle

I7 pY0pKq, λ;Kq // I7 pY2pKq, λ;Kq

vv
I7 pY,K, λ;Kq

hh

Remark 2.5. For the proofs of Theorems 1.1 and 1.2, we use the triangle in (2.4) over K “ F2, while
the proofs of Propositions 1.5 and 1.7 use the triangle over K “ C. additionally, the triangle over C
will be used in the joint work of Bhat and the authors (in preparation).

Here I7 pY,K, λ;Kq is the unreduced singular instanton knot homology of the triple pY,K, λq intro-
duced by Kronheimer-Mrowka [KM11a, §4.3] and mentioned in §2.1. They also introduced a reduced
version, which is denoted by I6 pY,K, λq. More precisely, we write K6 for the connected sum of K and
the Hopf link H Ă S3 with a standard arc λ0 connecting two components of H as in the first definition
of I7 pY, λq in §2.1. Then, we define

(2.1) I6 pY,K, λq “ IpY,K6, λ\ λ0q.

2.3. The sutured theory. For a balanced sutured manifold pM,γq, Kronheimer-Mrowka [KM11b]
introduced the sutured instanton homology SHIpM,γq. Note that this homology is only defined over
C and not F2 nor Z. The balanced sutured manifolds we will use in this paper all come from knot
complements. For a knot K Ă S3, we equip the knot with the Seifert framing. Let Γn be the suture on
BpS3zNpKqq – T 2 consisting of a pair of oppositely oriented non-separating simple closed curves of

7



slope ´n (adding the minus sign is to be consistent with the notations in the authors’ previous work).
Let Γµ “ µY p´µq consist of two meridians with opposite orientations. As defined in [KM11b, §7.6],
we have

KHIpS3,Kq “ SHIpS3zNpKq,Γµq and KHIpS3
npKq, rKnq “ SHIpS3zNpKq,Γ´nq.

We will need results from [GLW19, §5]. Note that the symmetry [Li21a, Theorem 1.2 (3)] between a
knot K and its mirror sK implies that

(2.2) SHIp´pS3zNp sKqq,Γ´nq – HompSHIpS3zNpKq,Γnq,Cq,

where the minus sign denotes the opposite orientation of the manifold. This allows us to translate the
results from [GLW19] into our current setup. In particular, for n P Z, we define

(2.3) Dγ
npKq “ dimKHIpS3

npKq, rKnq “ dimSHIpS3zNpKq,Γ´nq

Lemma 2.6 ([GLW19, Lemmas 5.2 and 5.5]). For any knot K Ă S3, the sequence tDγ
npKqunPZ is

unimodal with unique minimum n “ 2τIpKq, where τIpKq is the concordance tau invariant. That is,
we have

Dγ
n`1pKq “

#

Dγ
npKq ´ 1 n ă 2τIpKq;

Dγ
npKq ` 1 n ě 2τIpKq.

Remark 2.7. In [GLW19, Lemmas 5.2 and 5.5], the authors only stated that the unique minimum
of the sequence tDγ

npKqunPZ has an index n0pKq ď 2τIpKq. The inequality is indeed an equality
for the following reason. The inequality holds for any knot, especially for the mirror knot. Since
τIp sKq “ ´τIpKq by [GLW19, Corollary 1.3], the inequality in the other direction also holds, and we
conclude the equality. Also, Baldwin-Sivek [BS21] introduced another version of tau invariant denoted
by τ 7 and in [GLW19] it is shown that τI “ τ 7 for any knot K Ă S3.

2.4. Dimension formula for Dehn surgeries. In [BS21], Baldwin-Sivek proved a dimension formula
for the framed instanton homology of Dehn surgeries along a knot K Ă S3. For a knot K Ă S3 and
n P Z, we write

(2.4) D7,C
n pKq “ dim I7

`

S3
npKq;C

˘

.

Lemma 2.8 ([BS21, Theorem 1.2]). Suppose K Ă S3 is a knot. If K is V-shaped, then

D7,C
n pKq “ D7,C

ν7pKq
pKq ` |n´ ν7pKq|

where ν7pKq denotes the concordance invariant introduced by Baldwin-Sivek. If instead K is W-shaped,
then ν7pKq “ 0 and

D7,C
n pKq “

#

dim I7
`

S3
0pKq, µ;C

˘

` 2 n “ 0

dim I7
`

S3
0pKq, µ;C

˘

` |n| n P Zzt0u.

Lemma 2.9 ([BS21, Theorem 1.2]). Suppose K Ă S3 is a knot and n P N. Then

dim I7
´

S3
2n´1

2

pKq;C
¯

“

#

2D7,C
n pKq ´ 1 ν7pKq ă n

2D7,C
n pKq ` 1 ν7pKq ě n

Results from [BS21], [BS22a], and [GLW19] imply the following.

Lemma 2.10. Suppose K Ă S3 is a knot. Then either ν7pKq P t2τIpKq ` 1, 2τIpKq ´ 1u or ν7pKq “

τIpKq “ 0.

Another useful result as a corollary of [LY22a, Proposition 3.14] and [LY23, Theorem 1.2] is the
following.

Lemma 2.11. Suppose K Ă S3 is a knot and n P Zzt0u. Then there exists kn P N such that

Dγ
npKq “ D7,C

n pKq ` 2kn.
8



Definition 2.12. We say that a knot K Ă S3 is dually Floer simple for n P Zzt0u if

Dγ
npKq “ D7,C

n pKq, or equivalently kn “ 0.

If we do not specify n, then we simply call K dually Floer simple.

3. 2-torsion in framed instanton homology

In this section, we first prove Lemmas 1.14 and 1.15, and then use them to derive Theorems 1.1 and
1.2, and Propositions 1.7 and 1.12.

3.1. Surjectivity on the top summand. In this subsection, we use the integral surgery formula to

prove the following technical proposition about the differentials rd1,˘ for rK1 Ă S3
1pKq.

Proposition 3.1. Suppose K Ă S3 is a nontrivial knot and let rK1 be the dual knot in S3
1pKq. Write

KHIp´S3
1pKq, rK1q “

à

iPr´g,gs

KHIp´S3
1pKq, rK1q, iq

for the Alexander grading decomposition for any Seifert surface of rK1, where the minus sign denotes

the opposite orientation of the manifold, and g “ gp rK1q “ gpKq. Suppose

(3.1) rd1,˘ : KHIp´S3
1pKq, rK1, iq Ñ KHIp´S3

1pKq, rK1, i˘ 1q

are the first differentials corresponding to rK1 (see [LY21, Theorem 3.20] for the definition). Then rd1,˘
is surjective onto KHIp´S3

1pKq, rK1,˘gq, respectively.

Proof. Note that the dual knot rK1 is also null-homologous, and hence canonically framed by Seifert

longitude. We know S3 is obtained from S3
1pKq by p´1q-surgery on rK1. Hence ´S3 is obtained from

´S3
1pKq by p`1q-surgery on rK1. We apply two cases in the truncated version of the integral surgery

formula [LY22c, Proposition 2.22] (note that pp, q,mq “ p1, 0,´1q in our case, see also [LY22b] for the
full proof).

If g “ 1, then the second case in [LY22c, Proposition 2.22] applies and we have

I7
`

S3;C
˘

– H˚pAp0qq,

where Ap0q is the bent complex

pKHIp´S3
1pKq, rK1q, p rd1,` ` rd1,´q

ˇ

ˇ

KHIp´S3
1pKq,ĂK1,0q

q.

Note that rd1,˘ shifts the Alexander grading by ˘1. If rd1,` is not surjective onto the summand

KHIp´S3
1pKq, rK1, 1q, by the duality between rd1,˘ [LY21, Corollary 3.35], we know rd1,´ is also not

surjective onto the summand KHIp´S3
1pKq, rK1,´1q. Then H˚pAp0qq is at least 2-dimensional, which

contradicts the fact that I7
`

S3;C
˘

is 1-dimensional [KM11a, Proposition 4.2].
If g ą 1, then the first case in [LY22c, Proposition 2.22] applies, and we have

I7
`

S3;C
˘

– H˚pCone
` à

|s|ăg

H˚pApsqq
Π´`Ξ´1˝Π`

ÝÝÝÝÝÝÝÝÑ
à

sPr2´g,g´1s

H˚pB´psqq
˘

q.

Since Ξ´1 : H˚pB`psqq Ñ H˚pB´ps` 1qq is an isomorphism, and Π˘ sends H˚pApsqq to H˚pB˘psqq,
respectively for all s, we know

kerpΠ´ : H˚pApg ´ 1qq Ñ H˚pB´pg ´ 1qqq and kerpΠ` : H˚pAp1 ´ gqq Ñ H˚pB`p1 ´ gqqq

contribute to the homology of the mapping cone.

If rd1,` is not surjective onto the summand KHIp´S3
1pKq, rK1, gq, the elements in

KHIp´S3
1pKq, rK1, gqz Imp rd1,`q

contributes to the first kernel. By duality, we know rd1,´ is also not surjective onto the summand

KHIp´S3
1pKq, rK1,´gq, and the elements in

KHIp´S3
1pKq, rK1,´gqz Imp rd1,´q

9



contributes to the second kernel. Hence, the homology of the mapping cone is at least 2-dimensional,
which again induces a contradiction. □

A similar proof provides a general result.

Corollary 3.2. Suppose K Ă Y is a nontrivial null-homologous knot with the Seifert framing and let
rK1 be the dual knot in Y 3

1 pKq. Write g “ gp rK1q “ gpKq. Suppose

rd1,˘ : KHIp´Y1pKq, rK1, iq Ñ KHIp´Y1pKq, rK1, i˘ 1q

are the first differentials corresponding to rK1 (see [LY21, Theorem 3.20] for the definition). Then

2 dim coker rd1,˘|
KHIp´Y1pKq,ĂK1,˘pg´1q

ď dim I7pY ;Cq.

We also have the following corollary for the manifold without orientation reversal:

Corollary 3.3. Suppose K Ă S3 is a nontrivial knot and let rK1 be the dual knot in S3
1pKq. Then

the maps rd1,˘ on KHIpS3
1pKq, rK1q are injective on KHIpS3

1pKq, rK1,¯gpKqq, respectively, where the

signs of the differentials are chosen such that rd1,˘ shift the Alexander gradings by ˘1.

Proof. The proof of Proposition 3.1 uses manifolds with opposite orientations simply to be consistent
with the previous work of the authors. To obtain the corollary, we can either start with the manifolds
with opposite orientations such that the orientation reversal in the statement cancels, or take the dual
spaces and dual maps in the original statement via the symmetry in (2.2). Note that the symmetry
only reverses the orientation of the manifold but not that of the suture, so we need to further reverse
the orientation of the suture by the symmetry in the proof of [BS22b, Lemma 2.5]. Unpacking the
definitions of maps and isomorphisms, one can show these two constructions are indeed equivalent. □

Then we prove the first crucial lemma in §1.2 and Proposition 1.7 as an immediate application. For
readers’ convenience, we restate these results below.

Lemma 1.14. Suppose K Ă S3 is a nontrivial knot, then

dimKHIpS3
1pKq, rK1q ě dim I7

`

S3
1pKq

˘

` 2DtoppKq.

Proof. From [LY21, Theorem 3.20], if K is a rationally null-homologous knot in a 3-manifold Y , then
the maps d1,˘ on KHIpY,Kq (up to mirror) are the differentials on the first pages of the two spectral
sequences from KHIpY,Kq to I7 pY ;Cq. From Corollary 3.3 and (1.4), the ranks of d1,˘ are at least
DtoppKq, so the inequality in the lemma follows from the spectral sequences. □

Proposition 1.7. If K Ă S3 is a nontrivial knot, then I7

´

S3
1pKq, rK1;Z

¯

has 2-torsion.

Proof. Lemma 2.9 and Lemma 2.4 with K “ C and suitable framings implies that

dim I7
´

S3
1pKq, rK1;C

¯

ď dim I7
´

S3
1{2pKq;C

¯

` dim I7
`

S3;C
˘

ď dim I7
´

S3
1{2pKq;C

¯

` 1

ď 2 dim I7
`

S3
1pKq;C

˘

` 2

On the other hand, the equations (1.3) and Lemma 1.14 implies that

dim I7
´

S3
1pKq, rK1;F2

¯

ě 2 dimKHIpS3
1pKq, rK1q

ě 2 dim I7
`

S3
1pKq;C

˘

` 4DtoppKq

ě 2 dim I7
`

S3
1pKq;C

˘

` 4.

Hence I7

´

S3
1pKq, rK1;Z

¯

has 2-torsion. □
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3.2. Dually Floer simple knots. In this subsection, we study dually Floer simple knots K Ă S3.
One initial observation is the following.

Lemma 3.4. Suppose K Ă S3 is a knot and n P Zzt0u. If Dγ
npKq ‰ D7,C

n pKq, or equivalently kn ą 0
in Lemma 2.11, then we have

t2

´

S3
2n´1

2

pKq

¯

ą 0,

where the notions are from (2.3), (2.4), and (1.1). In such an assumption, we conclude that

I7

´

S3
2n´1

2

pKq;Z
¯

must have 2-torsion.

Proof. For a knot K Ă S3, we take the dual knot rKn Ă S3
npKq. We can take the meridian of the

original knot K Ă S3 to be the longitude of rKn to induce a framing. Applying Lemma 2.4 to rKn and
λ “ H over K “ F2, we obtain the following exact triangle

I7
`

S3;F2

˘

// I7

´

S3
2n´1

2

pKq;F2

¯

vv

I7

´

S3
npKq, rKn;F2

¯

gg

From the universal coefficient theorem and Lemmas 2.9 and 2.11, we conclude the following:

dim I7
´

S3
2n´1

2

pKq;F2

¯

ě dim I7
´

S3
2n´1

2

pKq;C
¯

ě 2Dγ
npKq ´ 1 “ 2D7,C

n pKq ` 4kn ´ 1.

On the other hand, Lemma 2.9 implies that:

dim I7
´

S3
2n´1

2

pKq;C
¯

ď 2D7,C
n pKq ` dim I7

`

S3;C
˘

“ 2D7,C
n pKq ` 1.

Hence, we conclude that

t2

´

S3
2n´1

2

pKq

¯

“
1

2

´

dim I7
´

S3
2n´1

2

pKq;F2

¯

´ dim I7
´

S3
2n´1

2

pKq;C
¯¯

ě 2kn ´ 1 ą 0.

Note that the last inequality follows from the hypothesis that kn ‰ 0. □

Corollary 3.5. Suppose K Ă S3 is a nontrivial knot. Then I7

´

S3
1{2pKq;Z

¯

has 2-torsion.

Proof. The corollary follows directly from Lemmas 3.4 and 1.14 by setting n “ 1. □

Lemma 3.4 motivates us to study the situation that Dγ
npKq “ D7,C

n pKq. Recall that we defined the
dually Floer simple knot in Definition 2.12. Now we prove the second crucial lemma in §1.2.

Lemma 1.15. Suppose K Ă S3 is a knot. Suppose n ą 0 is an integer such that

dimKHIpS3
npKq, rKnq “ dim I7

`

S3
npKq

˘

.

Then K must be fibered, V -shaped, and 0 ă ν7pKq “ 2τ 7pKq ´ 1 ă n, where the notions are from
[BS21].

Proof. Suppose K Ă S3 is dually Floer simple such that the dual knot rKn in the n-surgery is Floer
simple. Write τI “ τIpKq and ν7 “ ν7pKq. We discuss several cases.

Case 1. Suppose K is W -shaped. Then ν7 “ τI “ 0. Then Lemmas 2.6 and 2.8 imply that

Dγ
npKq “ D7,C

n pKq

for all n P Zzt0u. The equality for n “ 1 contradicts Lemma 1.14; see Figure 3.
Case 2. Suppose K is V -shaped and ν7 ą n. Then 2τI ě ν7 ´ 1 ě n. As a result, we could still

conclude that
Dγ

1 pKq “ D7,C
1 pKq

which again contradicts Lemma 1.14; see Figure 3.
11



x

y

10 ¨ ¨ ¨ n
x

y

1 ¨ ¨ ¨ n ¨ ¨ ¨ ν7 ´ 1

Figure 3. Left: Case 1. Right: Case 2. The blue curve represents the sequence
tD7,C

n pKqunPZ and the red curve represents the sequence tDγ
npKqunPZ. If the two curves

coincide, they are drawn in green.

Case 3. Suppose K is V -shaped and ν7 “ n. In this case either 2τI “ ν7 ` 1 “ n` 1 which implies
that

Dγ
n`1pKq “ D7,C

n`1pKq ´ 2

or 2τI “ ν7 ´ 1 “ n´ 1 which implies that

Dγ
n´1pKq “ D7,C

n´1pKq ´ 2

and both situations violate Lemma 2.11; see Figure 4.

x

y

n “ ν7 x

y

n “ ν7

Figure 4. Left: Case 3, 2τI “ ν7 ´ 1. Right: Case 3, 2τI “ ν7 ` 1. The blue
curve represents the sequence tD7,C

n pKqunPZ and the red curve represents the sequence
tDγ

npKqunPZ. If the two curves coincide, they are drawn in green.

Case 4. Suppose K is V -shaped, ν7 ă n, and 2τI “ ν7 ´ 1. In this situation, we conclude that

Dγ
ν7´1

pKq “ D7,C
ν7´1

pKq ´ 2

which is impossible by Lemma 2.11; see Figure 5.
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Case 5. Suppose K is V -shaped, ν7 ă n, and 2τI “ ν7 ` 1. In this situation, we conclude that

Dγ
mpKq “ D7,C

m pKq.

for any m ě 2τI and
Dγ
mpKq “ D7,C

m pKq ` 2.

for any m ď ν7 “ 2τI ´ 1. In particular, we must have ν7 ą 0 to make sure that

Dγ
1 pKq “ D7,C

1 pKq ` 2 rather than Dγ
1 pKq “ D7,C

1 pKq.

Then Lemma 1.14 implies that
DtoppKq “ 1

which further implies that K is a fibered knot by [KM10a, Proposition 4.1]; see Figure 5. In summary,

x

y

n¨ ¨ ¨ν7 x

y

n¨ ¨ ¨ν7 ν7 ` 1¨ ¨ ¨1

Figure 5. Left: Case 4. Right: Case 5. The blue curve represents the sequence
tD7,C

n pKqunPZ and the red curve represents the sequence tDγ
npKqunPZ. If the two curves

coincide, they are drawn in green.

under the assumption, only Case 5 will happen. Hence, we conclude the result in the lemma. □

3.3. 2-torsion in integral surgeries. In this subsection, we study the framed instanton homology of
Dehn surgeries over F2, aiming to show the existence of 2-torsion. For a knot K Ă S3, define a new
sequence similar to (2.4) for any n P Z.
(3.2) D7,F2,0

n pKq “ dim I7
`

S3
npKq;F2

˘

,

where the superscript 0 denotes the trivial bundle data, while we use the superscript µ to denote the
nontrivial bundle data in §3.4. Note that with this definition we have

(3.3) t2
`

S3
npKq

˘

“
1

2
pD7,F2,0

n pKq ´D7,C
n pKqq.

A simple observation is the following

Lemma 3.6. Suppose K Ă S3 is a knot. If either K is V-shaped and n ě ν7pKq or K is W-shaped
and n ě 1, then

t2
`

S3
n`1pKq

˘

ď t2
`

S3
npKq

˘

.

Proof. From Lemma 2.8, we know that when n ě ν7pKq, we have

D7,C
n`1pKq “ D7,C

n pKq ` 1.

Lemma 2.2 with K “ F2 implies that

D7,F2,0
n`1 pKq ď D7,F2,0

n pKq ` dim I7
`

S3
˘

ď D7,F2,0
n pKq ` 1.
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Hence, we obtain the result by (3.3). The case of W-shaped is similar. □

Corollary 3.7. For any fixed knot K Ă S3, there exists N P Z such that for any integer n ě N , we
have

t2
`

S3
n`1pKq

˘

“ t2
`

S3
npKq

˘

.

Proof. Lemma 3.6 implies that the sequence tt2
`

S3
npKq

˘

unPZ`
when n large is non-increasing, non-

negative, and always takes integral values. So it will eventually be a constant. □

Corollary 3.8. For any fixed knot K Ă S3, there exists N` P Z such that for any integer n ě N`, we
have

D7,F2,0
n`1 pKq “ D7,F2,0

n pKq ` 1.

Similarly, there exists an N´ P Z such that for any integer n ă N´, we have

D7,F2,0
n´1 pKq “ D7,F2,0

n pKq ` 1.

Proof. The existence of N` follows immediately from Corollary 3.7 and Lemma 2.8. The existence of
N´ is obtained by passing to the mirror of K. □

Proposition 3.9. Suppose K Ă S3 is a nontrivial knot and n P N such that

t2
`

S3
npKq

˘

“ 0.

Then one of the following statements holds.

(1) Either n “ 0 and K is W-shaped; or
(2) K is dually Floer simple and n ą ν7pKq.

Proof. We first deal with the case that n “ 0. If K is V -shaped, then by passing to the mirror of K,
we can assume that ν7pKq ď 0. Then we conclude from Lemma 3.6 that

t2
`

S3
1pKq

˘

“ 0

as well. An application of Lemma 2.2 over F2 implies

(3.4)

dim I7
´

S3
1{2pKq;F2

¯

ď D7,F2,0
0 pKq `D7,F2,0

1 pKq

“ D7,C
0 pKq `D7,C

1 pKq

“ dim I7
´

S3
1{2pKq;C

¯

where the second equation follows from the assumption t2
`

S3
0pKq

˘

“ t2
`

S3
1pKq

˘

“ 0 and the third

equation follows from Lemma 2.8 to n “ 0, 1, Lemma 2.9 to n “ 1, and the assumption ν7pKq ď 0.
From the universal coefficient theorem, the inequality in (3.4) must be equality and we have

t2

´

S3
1{2pKq

¯

“ 0,

which violates Corollary 3.5. From now on we assume that n ą 0.
Case 1. ν7pKq ă n. In this case, we conclude from Lemma 3.6 that

t2
`

S3
n`1pKq

˘

“ 0.

Then a similar application of Lemmas 2.2, 2.8, and 2.9 implies that

dim I7
´

S3
2n`1

2

pKq;F2

¯

ď D7,F2,0
n pKq `D7,F2,0

n`1 pKq

“ D7,C
n pKq `D7,C

n`1pKq

“ dim I7
´

S3
2n`1

2

pKq;C
¯

Hence the universal coefficient theorem implies that

t2

´

S3
2n`1

2

pKq

¯

“ 0,
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which by Lemma 3.4 implies that K must be dually Floer simple.
Case 2. ν7pKq ě n. In this case one could go backward (or switch to mirror knot) and run the

argument in Case 1 to conclude that

t2
`

S3
1pKq

˘

“ t2
`

S3
0pKq

˘

“ 0

and this further implies that

t2

´

S3
1{2pKq

¯

“ 0,

which contradicts Corollary 3.5. □

Now we are able to prove the main theorems in the introduction.

Theorem 1.1. Suppose K Ă S3 is a nontrivial knot (i.e., not the unknot). Then I7
`

S3
r pKq;Z

˘

for
r “ 1, 1{2, 1{4 all have 2-torsion.

Proof. The case of 1{2-surgery is done in Corollary 3.5. The case of 1-surgery follows from Proposition
3.9 and Lemma 1.15: if I7

`

S3
npKq;Z

˘

has no 2-torsion for some positive integer n, then we must have

n ą ν7pKq ą 0,

which implies n ě 2. The case of 1{4-surgery follows from the fact that 1-surgery on p2, 1q-cable of any
knot K produces a 3-manifold diffeomorphic to the one obtained from the 1{4-surgery on K [Gor83,
Corollary 7.3] (with m “ n “ p “ 1 and q “ 2). □

Theorem 1.2. Suppose K Ă S3 is a knot. If there exists n P Zzt0u such that I7
`

S3
npKq;Z

˘

has no
2-torsion, then K must be a fibered knot.

Proof. Taking the mirror knot if necessary, we can assume there exists a positive integer n such that
t2

`

S3
npKq

˘

“ 0. Then Proposition 3.9 implies that K is dually Floer simple. Then the theorem follows
from Lemma 1.15. □

3.4. Shapes of dimension sequences. Recall that in §3.3, we defined the sequence

D7,F2,0
n pKq “ dim I7

`

S3
npKq;F2

˘

.

We further define the following sequence

(3.5) D7,F2,µ
n pKq “ dim I7

`

S3
npKq, µ;F2

˘

to take the extra bundle data µ into consideration. In this subsection, we study those sequences. First,
we review the following technical lemma.

Lemma 3.10. Suppose W : Y0 Ñ Y1 is a cobordism between closed 3-manifolds. Let ν Ă W be a
properly embedded 2-manifold representing the bundle data. We write W : Y0 Ñ Y1 and λi “ Yi X ν for
i “ 0, 1. If ν ¨ S is odd for some embedded sphere S Ă W with zero self-intersection number, then the
map

I7 pW, ν;Kq : I7 pY0, λ0;Kq Ñ I7 pY1, λ1;Kq

vanishes for any commutative ring or field K.

Proof. It follows from the argument in the proof of [BS21, Proposition 3.3]: the boundary of the
neighborhood of S is S1 ˆS2by Th self-intersection number. If the bundle data is non-trivial, then there
are no flat connections, and hence a neck-stretching argument shows that the map must be zero. □

We have a few basic properties of the sequences.

Lemma 3.11. Suppose K Ă S3 is a knot. Then we have the following.

(1) If n P Z is odd, then

D7,F2,µ
n pKq “ D7,F2,0

n pKq.
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(2) If n P Z is even, then

D7,F2,µ
n pKq ´D7,F2,0

n pKq P t´2, 0, 2u.

(3) If n P Z is even such that D7,F2,µ
n pKq ‰ D7,F2,0

n pKq, then

D7,F2,0
n´1 pKq “ D7,F2,0

n`1 pKq.

Proof. Part (1) follows from the facts that H1pS3
npKq;F2q is trivial for n odd and the isomorphism

class of I7 pY, λq only depends on rλs P H1pY ;F2q.
For Part (2), we take λ “ µ and λ “ H in Lemma 2.2 when n is even. This yields two exact triangles

(3.6) I7
`

S3
npKq, µ;F2

˘

// I7
`

S3
n`1pKq;F2

˘

�� ��

I7
`

S3
npKq;F2

˘

oo

I7
`

S3;F2

˘

jj 44

This implies Part (2) since dim I7
`

S3;F2

˘

“ 1.

Part (3) follows from the triangles in (3.6) as well. Since dim I7
`

S3;F2

˘

“ dim I7
`

S3, µ;F2

˘

“ 1,
we have

|D7,F2,0
n˘1 pKq ´D7,F2,0

n pKq| ď 1 and |D7,F2,0
n˘1 pKq ´D7,F2,µ

n pKq| ď 1.

So when D7,F2,µ
n pKq ‰ D7,F2,0

n pKq, we must have D7,F2,µ
n pKq “ D7,F2,0

n pKq ˘ 2 from Part (2) and hence

D7,F2,0
n´1 pKq “ D7,F2,0

n`1 pKq.

□

Lemma 3.12. Suppose n is odd and

D7,F2,0
n pKq “ D7,F2,µ

n`1 pKq ` 1,

Then we have
D7,F2,0
n´1 pKq “ D7,F2,0

n pKq ` 1.

Proof. The proof follows the idea in the proof of [BS21, Lemma 3.1]. First, we describe the maps in
the triangles from Lemma 2.2 explicitly. Taking λ “ H in Lemma 2.2, we have

(3.7) I7
`

S3
npKq, µ;F2

˘

// I7
`

S3
n`1pKq;F2

˘

Gn`1ww
I7

`

S3;F2

˘

Fµ
n

hh

Here, the map Fµn is induced by the cobordism Xn that is obtained from r0, 1s ˆ S3 by attaching an
n-framed 2-handle along K. The bundle data νpFµn q on Xn inducing Fµn is the co-core disk of the
2-handle. The map Gµn`1 is induced by the cobordism Zn`1 that is obtained from r0, 1s ˆ S3

n`1pKq by
attaching a 0-framed 2-handle along a meridian of the knot K (that survives from the pn` 1q-surgery
along K and hence becoming a curve in S3

n`1pKq). The bundle data νpGn`1q is trivial. Since we have
not specify the homology orientation, the maps are determined by the cobordisms and the bundle data
up to signs.

Taking λ “ µ in Lemma 2.2, we have

(3.8) I7
`

S3
npKq;F2

˘

// I7
`

S3
n`1pKq, µ;F2

˘

Gµ
n`1vv

I7
`

S3;F2

˘

Fn

gg

Note that we have
I7

`

S3;F2

˘

– I7
`

S3, µ;F2

˘

16



since µ bounds a disk inside S3 and hence represent a trivial homology class. The cobordisms inducing
Fn and Gµn`1 are the same as those for Fµn and Gn`1, but the bundle data becomes different. For Fn,

the bundle data νpFnq is the union of νpFµn q with an annulus r0, 1s ˆ µ capped off inside S3 by a disk
bounded by µ. This actually yields a second copy of νpFµn q so the bundle data νpFnq can be chosen to
be trivial. Similarly, we conclude that νpGµn`1q can be taken as a core disk of the 2-handle forming
Zn`1.

Now let n be the odd number as in the hypothesis of the lemma. We have the following diagram.

I7
`

S3
n´1pKq;F2

˘

// I7
`

S3
npKq, µ;F2

˘

– I7
`

S3
npKq;F2

˘

Gµ
n

��

// I7
`

S3
n`1pKq, µ;F2

˘

ss
I7

`

S3;F2

˘

kk

Fn

OO

Note that the union of the co-core disk in Zn and the core disk in Xn form an embedded sphere S with
zero self-intersection number. The union of the bundle data for Gµn and Fn is just the core disk in Zn,
which intersects S once. We know from Lemma 3.10 that

Fn ˝Gµn “ 0 : I7
`

S3
npKq, µ;F2

˘

Ñ I7
`

S3
npKq;F2

˘

.

By hypothesis, we know that Fn is injective, so Gµn “ 0, which implies that

D7,F2,0
n´1 pKq “ D7,F2,0

n pKq ` 1.

□

Lemma 3.13. Suppose n is odd such that

D7,F2,0
n pKq “ D7,F2,0

n`1 pKq ` 1,

Then we know that

D7,F2,µ
n´1 pKq “ D7,F2,0

n pKq ` 1.

Proof. Following the proof of Lemma 3.11, we have a diagram

I7
`

S3
n´1pKq, µ;F2

˘

// I7
`

S3
npKq;F2

˘

– I7
`

S3
npKq, µ;F2

˘

Gn

��

// I7
`

S3
n`1pKq;F2

˘

ss
I7

`

S3;F2

˘

kk

Fµ
n

OO

which implies (following the proof of Lemma 3.12) that

D7,F2,µ
n´1 pKq “ D7,F2,0

n pKq ` 1.

□

Lemma 3.14. Suppose n is even such that

D7,F2,µ
n pKq “ D7,F2,0

n`1 pKq ` 1,

Then we know that

D7,F2,0
n´1 pKq “ D7,F2,0

n pKq ` 1.
17



Proof. In this case, we have the following diagram.

I7
`

S3
npKq, µ;F2

˘

// I7
`

S3
n`1pKq;F2

˘

tt
I7

`

S3;F2

˘

tt

Fµ
n

OO

I7
`

S3
n´1pKq, µ;F2

˘

// I7
`

S3
npKq;F2

˘

Gn

OO

The hypothesis then implies that Fµn is injective and by Lemma 3.10 we have Gn is injective, which
implies that

D7,F2,0
n´1 pKq “ D7,F2,0

n pKq ` 1.

□

Lemma 3.15. Suppose n is even such that

D7,F2,0
n pKq “ D7,F2,0

n`1 pKq ` 1,

Then we know that
D7,F2,0
n´1 pKq “ D7,F2,µ

n pKq ` 1.

Proof. In this case, we have the following diagram.

I7
`

S3
npKq;F2

˘

// I7
`

S3
n`1pKq, µ;F2

˘

tt
I7

`

S3;F2

˘

tt

Fn

OO

I7
`

S3
n´1pKq;F2

˘

// I7
`

S3
npKq, µ;F2

˘

Gµ
n

OO

The hypothesis then implies that Fn is injective and by Lemma 3.10 we have Gµn is injective, which
implies that

D7,F2,0
n´1 pKq “ D7,F2,µ

n pKq ` 1.

□

Now we are ready to prove Propositions 1.11 and 1.12. We restate Proposition 1.11 with more

details. We start with the definitions of two invariants ν7,F2

˘ pKq.

Definition 3.16. Suppose K Ă S3 is a knot. Define

ν7,F2

` pKq “ mintn | @k ě n, dim I7
`

S3
k`1pKq;F2

˘

“ dim I7
`

S3
kpKq;F2

˘

` 1u

and ν7,F2

´ pKq “ maxtn | @k ď n, dim I7
`

S3
k´1pKq;F2

˘

“ dim I7
`

S3
kpKq;F2

˘

` 1u.

Proposition 1.12. The invariants ν7,F2

˘ pKq are concordance invariants.

Proof. We first observe that from the triangles (3.7) and (3.8), we know the following.

ν7,F2

` pKq “ mintn | @k ě n, Fµk “ 0 if k odd or Fk “ 0 if k even.u

Now, if K0 and K1 are two knots that are concordant to each other, then the proof of [BS21,
Theorem 3.7] (about the concordance invariant NpKq) applies here as well, and we conclude that

FnpK0q ‰ 0 ô FnpK1q ‰ 0 and Fµn pK0q ‰ 0 ô Fµn pK1q ‰ 0

As a result, we conclude that ν7,F2

` pKq is a concordance invariant and ν7,F2

´ pKq is as well due to the

symmetry between K and sK. □
18



Proposition 3.17 (Proposition 1.11). For a knot K Ă S3, we have the following two results regarding

ν7,F2

˘ .

‚ For any n ě ν7,F2

` pKq, we have

(3.9) D7,F2,0
n`1 pKq “ D7,F2,µ

n`1 pKq “ D7,F2,0
n pKq ` 1 “ D7,F2,µ

n pKq ` 1

‚ For any n ď ν7,F2

´ pKq, we have

(3.10) D7,F2,0
n´1 pKq “ D7,F2,µ

n´1 pKq “ D7,F2,0
n pKq ` 1 “ D7,F2,µ

n pKq ` 1

Furthermore, the sequence tD7,F2,0
n pKqunPZ has one of the following three shapes.

(1) V-shaped (see Figure 6): we have that tD7,F2,0
n pKqunPZ is unimodal, i.e., it has a unique

minimum at integer m “ ν7,F2

` pKq “ ν7,F2

´ pKq. Furthermore, we have

D7,F2,µ
n pKq “ D7,F2,0

n pKq for n ‰ m and
#

D7,F2,µ
m pKq ´D7,F2,0

m pKq P t0, 2u if m is even;

D7,F2,µ
m pKq “ D7,F2,0

m pKq if m is odd.

n
ν7,F2

´ pKq “ ν7,F2

` pKq
n

ν7,F2

´ pKq “ ν7,F2

` pKq

Figure 6. The case of a V-shaped knot. The blue curve represents the se-
quence tD7,F2,0

n pKqunPZ and the red (dashed) curve and dots represent the sequence
tD7,F2,µ

n pKqunPZ. Left: General situation. Right: Note that this could only happen

when m “ ν7,F2

´ pKq “ ν7,F2

` pKq is even.

(2) W-shaped (see Figure 7): we have ν7,F2

` pKq “ ν7,F2

´ pKq ` 2 and for m “ ν7,F2

` pKq ´ 1 “

ν7,F2

´ pKq ` 1, we have
#

D7,F2,0
m pKq “ D7,F2,µ

m pKq ` 2 and D7,F2,µ
n pKq “ D7,F2,0

n pKq if m is even and n ‰ m;

D7,F2,0
m˘1 pKq “ D7,F2,µ

m˘1 pKq ´ 2 and D7,F2,µ
n pKq “ D7,F2,0

n pKq if m is odd and n ‰ m˘ 1.

(3) Generalized W-shaped (see Figure 8): we have m “ ν7,F2

` pKq ą ν7,F2

´ pKq ` 2 and the following

holds. For an even integer n such that n P rν7,F2

´ pKq, ν7,F2

` pKqs, we have
#

D7,F2,0
n pKq “ D7,F2,µ

n pKq ` 2 if m is odd;

D7,F2,0
n pKq “ D7,F2,µ

n pKq ´ 2 if m is even

and for other integer n, we have

D7,F2,0
n pKq “ D7,F2,µ

n pKq.
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n
ν7,F2

´ pKq ν7,F2

` pKq
n

ν7,F2

´ pKq ν7,F2

` pKq

Figure 7. The case of a W-shaped knot. The blue curve represents the se-
quence tD7,F2,0

n pKqunPZ and the red (dashed) curve and dots represent the sequence

tD7,F2,µ
n pKqunPZ. Left: ν

7,F2

˘ pKq are odd and m is even. Right: ν7,F2

˘ pKq are even and
m is odd.

nν7,F2

´ pKq ν7,F2

` pKq nν7,F2

´ pKq ν7,F2

` pKq

Figure 8. The case of a generalized W-shaped knot. The blue curve represents the
sequence tD7,F2,0

n pKqunPZ and the red (dashed) curve and dots represent the sequence

tD7,F2,µ
n pKqunPZ. Left: ν

7,F2

` pKq is odd. Left: ν7,F2

` pKq is even

Remark 3.18. Note that Proposition 3.17 also describes the behavior of the sequence tD7,F2,0
n pKqunPZ,

which is indeed also in either V-, W-, or generalized W-shapes. Following Remark 1.13, we can also
consider the widths of the generalized W-shapes for both tD7,F2,0

n pKqunPZ and tD7,F2,µ
n pKqunPZ, which

we write as w0pKq and wµpKq, respectively. To define the latter width, we first define numbers similar

to ν7,F2

` pKq and ν7,F2

´ pKq by considering the dimensions with µ, and then consider half of the difference.
Note that Proposition 1.12 and its variation involving µ show that both widths are concordance
invariants. Then Proposition 3.17 implies

|w0pKq ´ wµpKq| “ 1

unless both widths are equal to zero (the first case in Figure 6). By a direct computation, we know
w0pUq “ 1 and wµpUq “ 0 for the unknot U .

Proof of Proposition 3.17. We observe that if n ą ν7,F2

` pKq and D7,F2,0
n pKq ‰ D7,F2,µ

n pKq, then Lemma
3.11 Part (3) implies that

D7,F2,0
n´1 pKq “ D7,F2,0

n`1 pKq

which contradicts the definition of ν7,F2

` pKq. Therefore, Equation (3.9) follows. The proof of Equation
(3.10) follows similarly.

Next, we deal with the shape. Note that, by definition, we have

(3.11) D7,F2,0

ν
7,F2
`

pKq´1
pKq “ D7,F2,0

ν
7,F2
`

pKq
pKq ` 1 and D7,F2,0

ν
7,F2
´

pKq`1
pKq “ D7,F2,0

ν
7,F2
´

pKq
pKq ` 1.
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This implies that ν7,F2

` pKq ‰ ν7,F2

´ pKq ` 1. We discuss several cases.

Case 1. We have ν7,F2

` pKq “ ν7,F2

´ pKq. Then K is V -shaped by (3.9), (3.10), and Parts (1) and (2)
of Lemma 3.11.

Case 2. We have ν7,F2

` pKq “ ν7,F2

´ pKq ` 2 and they are both odd (and m is even). Equation (3.11)
implies that

D7,F2,0
n pKq “ D7,F2,0

ν
7,F2
`

pKq
pKq ` 1 “ D7,F2,0

ν
7,F2
´

pKq
pKq ` 1

And hence K is W-shaped. Lemma 3.15 then implies that

D7,F2,0
n pKq “ D7,F2,µ

n pKq ` 2.

Case 3. We have ν7,F2

` pKq “ ν7,F2

´ pKq ` 2 and they are both even (and m is odd). Equation (3.11)
directly implies that K is W-shaped. If

D7,F2,µ

ν
7,F2
`

pKq
pKq “ D7,F2,0

ν
7,F2
`

pKq
pKq,

then Equation (3.11) together with Lemmas 3.12, 3.13, 3.14, and 3.15 implies that K is V-shaped and

ν7,F2

` pKq “ ν7,F2

´ pKq, which is a contradiction. Hence, we have

D7,F2,µ

ν
7,F2
`

pKq
pKq “ D7,F2,0

ν
7,F2
`

pKq
pKq ` 2.

The possibility of ´2 in the above equation can also be ruled out by Equation (3.11). A similar
argument shows that

D7,F2,µ

ν
7,F2
´

pKq
pKq “ D7,F2,0

ν
7,F2
´

pKq
pKq ` 2.

Case 4. We have ν7,F2

` pKq ą ν7,F2

´ pKq ` 2, and ν7,F2

` pKq is even. Equation (3.11) and Lemma 3.14
together imply that

D7,F2,µ

ν
7,F2
`

pKq
pKq “ D7,F2,0

ν
7,F2
`

pKq
pKq.

Now suppose n ă ν7,F2

` pKq is an odd integer such that

D7,F2,µ
n`1 pKq “ D7,F2,0

n`1 pKq ` 2,

Then we know from Lemma 3.13 that

D7,F2,µ
n´1 pKq “ D7,F2,0

n pKq ` 1.

If D7,F2,0
n´1 pKq “ D7,F2,0

n pKq ` 1 as well, then Lemmas 3.12, 3.13, 3.14, and 3.15 together imply that

ν7,F2

´ pKq “ n` 1.

If D7,F2,0
n´1 pKq “ D7,F2,0

n pKq ´ 1, then Lemma 3.11 Part (3) implies that

D7,F2,0
n´2 pKq “ D7,F2,0

n pKq

and hence the conditions that hold for n also hold for n ´ 2. We can perform an induction starting

from n “ ν7,F2

` pKq, which terminates when we arrive at the situation when n` 1 “ ν7,F2

´ pKq. In this
case, K is generalized W-shaped.

Case 5. We have ν7,F2

` pKq ą ν7,F2

´ pKq ` 2, and ν7,F2

` pKq is odd. If

D7,F2,µ

ν
7,F2
`

pKq´1
pKq “ D7,F2,µ

ν
7,F2
`

pKq
pKq ` 1

Then Equation (3.11) together with Lemmas 3.12, 3.13, 3.14, and 3.15, imply that ν7,F2

´ pKq “ ν7,F2

` pKq

which contradicts the assumption. If

D7,F2,µ

ν
7,F2
`

pKq´1
pKq “ D7,F2,µ

ν
7,F2
`

pKq
pKq ´ 1

then we have

D7,F2,0

ν
7,F2
`

pKq´2
pKq “ D7,F2,0

ν
7,F2
`

pKq
pKq
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and we can perform an induction similarly as in Case 4 to conclude that K must be generalized
W-shaped. □

4. 2-torsion in singular instanton knot homology

In this section, we prove Proposition 1.5 and Theorem 1.16.

4.1. Genus-one knots. In this subsection, we focus on knots K Ă S3 with gpKq “ 1. Since the genus
is small, we can compute most of the relevant information over C from our previous work. Recall the
definition of DtoppKq in (1.4) when gpKq “ 1

DtoppKq “ dimCKHIpS3,K, 1q.

Lemma 4.1. For a knot K Ă S3 with gpKq “ 1, and let τI be the instanton tau invariant, we have

dimKHIpS3,K, iq “

$

’

&

’

%

DtoppKq i “ ˘1;

” 1 pmod 2q i “ 0;

0 otherwise.

Proof. The case i “ 1 is by definition. The cases |i| ą 1 and i “ ´1 follow from the adjunction
inequality and the symmetry from [KM10b, §7] respectively. The case i “ 0 follows from [KM10a,
Theorem 1.1] and the fact that the sum of the coefficients the Alexander polynomial ∆Kptq of a knot is
always odd. □

Lemma 4.2. Suppose K Ă S3 is a knot with gpKq “ 1. Then we have

dim I7
`

S3
1pKq;C

˘

“

#

2DtoppKq ´ 1 τIpKq “ 1

2DtoppKq ` 1 τIpKq ă 1

Proof. This is simply a restatement of [LY22c, Corollary 8.4]. □

We are ready to prove the main result of this subsection.

Proposition 1.5. If K Ă S3 is a knot with genus one and the Alexander polynomial ∆Kptq ‰ 1, then
I7

`

S3,K;Z
˘

has 2-torsion.

Proof. Applying Lemma 4.2 to the mirror knot sK, we conclude that

dim I7
`

S3
´1pKq;C

˘

“

#

2DtoppKq ` 1 τIpKq ą ´1

2DtoppKq ´ 1 τIpKq “ ´1

Lemma 2.4 with p´1q-framing then implies that

(4.1) dim I7
`

S3,K;C
˘

ď

#

4DtoppKq τIpKq “ ˘1

4DtoppKq ` 2 τIpKq “ 0

When τIpKq “ ˘1, from the inequalities (1.3), (4.1), and Lemma 4.1, we have

dim I7
`

S3,K;F2

˘

´ dim I7
`

S3,K;C
˘

ě2 dimKHIpS3,Kq ´ 4DtoppKq

“2p2DtoppKq ` 1q ´ 4DtoppKq

ě2

When τIpKq “ 0 and ∆Kptq ‰ 1, we then claim that

dimKHIpS3,K, 0q ě 3

Recall from [LY21, Theorem 3.20] that we introduced differentials

d1,´ : KHIpS3,K, iq Ñ KHIpS3,K, i´ 1q and d2,´ : KHIpS3,K, 1q Ñ KHIpS3,K,´1q

22



such that the homology

H˚pKHIpS3,Kq, d1,´ ` d2,´q – I7
`

S3;C
˘

– C,

and τIpKq is the grading that supports a generator of I7
`

S3;C
˘

by a reinterpretation. Furthermore,

we know that d2,´ shifts the Z{2 homological grading on KHIpS3,Kq by 1 from [LY21, §3.7]. Assume
that

∆Kptq “ at` b` at´1.

Since we have assumed that ∆Kptq ‰ 1, we know a ‰ 0. From [KM10a, Theorem 1.1], we know that

χpKHIpS3,K,˘1qq “ ´a ‰ 0.

We claim that d1,´ ‰ 0. If d1,´ “ 0, we know that

dim I7
`

S3;C
˘

“ dimH˚pKHIpS3,Kq, d2,´q ě dimkerpd1
2,´q ě a` 1,

where d1
2,´ is the restriction of d2,´ on the Alexander gradings 1 and 0, the contribution a comes

from KHIpS3,K, 1q since d2,´ shifts the homological grading, and the contribution 1 comes from
KHIpS3,K, 0q by Lemma 4.1. Since a ‰ 0, we conclude that dim I7

`

S3;C
˘

ě 2, which is impossible.

Now, we have d1,´ ‰ 0. If dimKHIpS3,K, 0q “ 1, then we know that

either d1,´
`

KHIpS3,K, 0q
˘

‰ 0, or KHIpS3,K, 0q Ă Impd1,´q,

while either case contradicts the fact that τIpKq “ 0. Hence, we conclude the claim dimKHIpS3,K, 0q ě

3 by Lemma 4.1.
Since dimKHIpS3,K, 0q ě 3, the inequalities (1.3), (4.1), and Lemma 4.1 again imply that

dim I7
`

S3,K;F2

˘

´ dim I7
`

S3,K;C
˘

ě2 dimKHIpS3,Kq ´ p4DtoppKq ` 2q

“2p2DtoppKq ` 3q ´ 4DtoppKq ´ 2

ě4.

This concludes the proof of the proposition. □

4.2. Unknotting-number-one knots. In this subsection, we focus on knots with unknotting number
one. Suppose L1 “ K Y L Ă S3 is a link, where K is a knot and has zero linking number with any
component of L. For any rational number r “ p{q P Q, let Γr be the suture on S3zNpKq consisting of
two curves of slope ´r with opposite orientations, with respect to the Seifert framing of K. Let Γµ
again be the suture consisting of two meridians of K. We write

ΓLr “ SHIp´pS3zNpKqq,´Γr, Lq,

where SHI denotes the instanton Floer homology of a balanced sutured manifold with tangle constructed
by Xie-Zhang [XZ19], and we regard L Ă S3zNpKq as the tangle (indeed the link is the singular locus).
As in [LY22b, §2], a Seifert surface of K disjoint from L induces a grading on ΓLr , which takes value in
Z when p odd and Z ` 1{2 when p even. We write the grading as

ΓLr “
à

i

pΓLr , iq

Since L is inside the interior of S3zNpKq, all arguments and constructions we did without the singular
locus apply verbatim. Suppose g is the minimal genus of the Seifert surface of K disjoint from L. Then
we have the following lemmas.

Lemma 4.3 ([LY22a, Theorem 2.21]). Suppose r “ p{q P Q, where p and q are co-prime and p ą 0.
Then we have the following

(1) For |i| ą g `
p´1
2 , we have

pΓLr , iq “ 0.
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(2) For r ‰ 0 and |i| “ g `
p´1
2 , we have

pΓLr , iq – SHIp´M,´γ, Lq,

where pM,γ, Lq is obtained from pS3zNpKq,Γn, Lq by decomposing along a minimal genus
Seifert surface of K disjoint from L.

Lemma 4.4 ([LY22a, Proposition 4.26], or the restatement in [LY22b, Lemma 2.19]). Suppose n is an
odd integer with n ě 2g` 1. Then we have the following. (We have similar results when n is even if we
consider i P Z ` 1{2).

(1) For integer |i| ď n´1
2 ´ g, we have

pΓL2n´1
2

, iq – I7
`

´S3, L
˘

.

(2) We have

I7
`

´S3
´npKq, L

˘

–

n´1
2

à

i“ 1´n
2

pΓL2n´1
2

, iq.

Lemma 4.5 ([LY22a, Proposition 4.14], or the restatement in [LY22b, Lemma 2.13]). For any n P Z,
we have two (graded) exact triangles

pΓLn , i´ n´1
2 q

ψn
`,n´1 // pΓLn´1, i` n

2 q

ψn´1

`, 2n´1
2

xx
pΓL2n´1

2

, iq
ψ

2n´1
2

`,n

ff
pΓLn , i` n´1

2 q
ψn

´,n´1 // pΓLn´1, i´ n
2 q

ψn´1

´, 2n´1
2

xx
pΓL2n´1

2

, iq
ψ

2n´1
2

´,n

ff

Lemma 4.6 ([LY21, Proposition 5.5]). Suppose n ě 2g ` 1 and |i| ď g. Then we have

ψn`1
`,n ˝ ψn`2

´,n`1 “ 0 : pΓLn`2, i`
n` 1

2
q Ñ pΓLn , i`

n´ 1

2
q;

ψn`1
´,n ˝ ψn`2

`,n`1 “ 0 : pΓLn`2, i´
n` 1

2
q Ñ pΓLn , i´

n´ 1

2
q.

Now we are ready to prove Theorem 1.16.

Theorem 1.16. If J Ă S3 is a knot with unknotting number one, then

dim I7
`

S3, J ;C
˘

ď dim I6
`

S3, J ;C
˘

` 3 “ dimKHIpS3, Jq ` 3.

Proof. For simplicity, we assume all Floer homologies in the proof are over C and omit the notation.
Since J has unknotting number one, we can find a two-component link K Y U such that the following
hold. See Figure 9.

‚ K and U are both unknots inside S3.
‚ K bounds a disk that intersects U twice with opposite signs.
‚ U Ă S3

´1pKq – S3 coincides with either J or its mirror.

Let L denote either U or U 6 (see the definition of U 6 from (2.1)). We first pass to the mirror of K,
or equivalently, K Ă ´S3. For any n P Z, the surgery triangle from Lemma 2.2 along K yields an exact
triangle

I7
`

p´S3qnpKq, L
˘

// I7
`

p´S3qn`1pKq, L
˘

vv
I7

`

´S3, L
˘

Gn

hh

Note that Gn is the map induced by a cobordism Wn obtained from r0, 1s ˆ p´S3, Lq by attaching a
4-dimensional 2-handle with framing n. Since K has a genus-one Seifert surface S disjoint from L, as
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U Ă S3 J “ U Ă S3
´1pKq – S3

K

Figure 9. The two component link K Y U Ă S3.

shown in Figure 10, we can cap it off by the core of the 2-handle. This yields a closed oriented surface
pΣn Ă W with gppΣnq “ 1 and pΣn ¨ pΣn “ n. Hence the adjunction inequality originated from [KM95,
Theorem 1.1] implies that Gn “ 0 when n ě 1. As a result, we conclude that, for any integer n ě 1,

dim I7
`

p´S3qnpKq, L
˘

“ dim I7
`

p´S3q1pKq, L
˘

` pn´ 1q ¨ dim I7
`

´S3, L
˘

Taking n ě 3, and changing back to the original knot K Ă S3, Lemma 4.4 implies that

(4.2) pΓL2n´1
2

, 0q – I7
`

´S3
´1pKq, L

˘

.

Indeed, the isomorphism (4.2) can also be obtained from the integral surgery formula and the discussion
before [LY22c, Proposition 2.23].

U Ă S3 K

S

K

Figure 10. The Seifert surface S of K, which is the union of the shadow twice-
punctured disk and the tube along U .

Taking n “ 3 and 4, Lemma 4.5 then implies the following two exact triangles.

pΓL7
2

, 0q // pΓL4 ,
3
2 q //

ψ4
´,3zz

pΓL9
2

,´1q

yy
pΓL3 ,´2q

dd

pΓL5 ,´3q

ψ5
`,4

dd
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Applying [OSS15, Lemma A.3.10], and using the fact that ψ4
´,3 ˝ ψ5

`,4 “ 0 in the above grading from
Lemma 4.6 for g “ 1, n “ 3, i “ ´1, we obtain a triangle

pΓL7
2

, 0q // pΓL9
2

,´1q

vv
pΓL3 ,´2q ‘ pΓL5 ,´3q

gg

From Lemma 4.3, Lemma 4.4, the equation (4.2), we obtain the following exact triangle

(4.3) I7
`

´S3
´1pKq, L

˘

// I7
`

´S3, L
˘

tt
SHIp´M,´γ, Lq ‘ SHIp´M,´γ, Lq

kk

where pM,γq is obtained from pS3zNpKq,Γnq by decomposing along the surface S, and L survives in
M . See Figure 11.

M

γL

Figure 11. The sutured manifold pM,γq.

Taking L “ U in (4.3), recalling that J “ U Ă S3
´1pKq – S3, we have

(4.4)
dim I7

`

´S3, J
˘

ď 2 dimSHIp´M,´γ, Uq ` dim I7
`

´S3, U
˘

“ 2 dimSHIp´M,´γ, Uq ` 2,

where the last equation follows from [KM11a, Lemma 8.3].
Taking L “ U 6 in (4.3), we have

dim I7
`

´S3, J 6
˘

ě 2 dimSHIp´M,´γ, U 6q ´ dim I7
`

´S3, U 6
˘

“ 2 dimSHIp´M,´γ, U 6q ´ 2,

where the last equation follows from the fact in [Xie21, Lemma 5.3] that for any knot J Ă S3, we have

dim I7
`

´S3, J 6
˘

“ 2 dim Ip´S3, J 6q “ 2 dim I6
`

´S3, J
˘

.

Hence, we conclude

(4.5) dim I6
`

´S3, J
˘

ě dimSHIp´M,´γ, U 6q ´ 1.

Comparing (4.4) and (4.5), we can conclude the theorem as long as

(4.6) dimSHIp´M,´γ, U 6q “ 2 dimSHIp´M,´γ, Uq.
26



We first deal with the left-hand side of (4.6). Take M1 “ MzNpUq and γ1 “ γ Y µU , where µU is
the union of two meridians; see Figure 12. The proof of [KM11a, Proposition 1.4] applies here, and we
conclude that

SHIp´M,´γ, U 6q – SHIp´M1,´γ1q.

Furthermore, we observe that pM1, γ1q admits a product annulus A. Let pM2, γ2q be the result of
the sutured manifold decomposition of pM1, γ1q along A, we conclude from the instanton version of
[KM10b, Proposition 6.7] that

(4.7) SHIp´M,´γ, U 6q – SHIp´M1,´γ1q – SHIp´M2,´γ2q.

See Figure 12.

M1 M2

µU
γ

A

Figure 12. Left: The sutured manifold pM1, γ1q. Right: The sutured manifold pM2, γ2q.

M M

U γ

D

Isotopy

Figure 13. Left: The disk D Ă M . Right: The isotopy of BD.

Next, we deal with pM,γ,Uq. Since U no longer has an earring, we do not perform an excision as
in the proof of [KM11a, Proposition 1.4]. The annulus A Ă M1 “ MzNpUq now becomes a disk D
intersecting U uniquely at one point. Isotope BD to make it intersect γ at two points, and still write
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the perturbed disk as D; see Figure 13. Choose the orientation of D such that the sutured manifold
decomposition

p´M,´γ, Uq
D
⇝ p´M 1

1,`,´γ
1
1,`, T q

is taut; see Figure 14.

M 1
1 M 1

2 – M2

T
γ1
1

γ1
1

µT

Figure 14. Left: The sutured manifold pM 1
1, γ

1
1q. Right: The sutured manifold pM 1

2 – M2, γ
1
2q.

Note that we have another sutured manifold decomposition

p´M,´γ, Uq
´D
⇝ p´M 1

1,´,´γ
1
1,´, T q,

where p´M 1
1,´,´γ

1
1,´, T q is not taut since the isotopy creates a component of ´γ1,´ bounding a disk

and hence Rp´γ1,´q is compressible. Note that, here T Ă S3 is a tangle, and is vertical in the sense of
[XZ19, Definition 1.1]. The construction of [Li21b, §3] applies to D Ă p´M,´γq, and we can find a
closure Y for p´M,´γq such that D extends to a torus Σ1 Ă Y that intersects the singular locus U
transversely at one point. As a result, [XZ19, Proposition 6.1] applies and hence this torus Σ1 leads to
an operator µorbpΣ1q on SHIp´M,´γ, Uq that has only two possible eigenvalues 1 and ´1. Hence, we
have a generalized eigenspace decomposition

SHIp´M,´γ, Uq “ SHIp´M,´γ, U, 1q ‘ SHIp´M,´γ, U,´1q.

Proof of [KM10b, Proposition 7.11] then implies that

SHIp´M,´γ, U,˘1q – SHIp´M 1
1,˘,´γ1,˘, T q.

Since Rp´γ1,´q is compressible, we conclude that SHIp´M 1
1,´,´γ1,´, T q “ 0 and hence

SHIp´M,´γ, Uq – SHIp´M 1
1,`,´γ1,`, T q.

Applying [XZ19, Lemma 7.10], we conclude that

SHIp´M,´γ, Uq – SHIp´M 1
1,`,´γ1,`, T q – SHIp´M 1

2,´γ
1
2q,

whereM 1
2 “ M 1

1,`zNpT q and γ2 “ γ1,` YµT for a meridian µT of T ; see Figure 14. It is straightforward
to check that M 1

2 – M2 and γ2 is the union of γ1
2 with two more parallel copies of µT . Then (4.7) and

the proof of [KM10a, Theorem 3.1] implies that

SHIp´M,´γ, U 6q – SHIp´M2,´γ2q – SHIp´M2,´γ
1
2q b C2 – SHIp´M,´γ, Uq b C2.

This completes the proof of the equation in (4.6) and hence the inequalities (4.4) and (4.5) conclude
the proof of the theorem. □

5. Results in Heegaard Floer theory

In this section, we prove Theorem 1.4 using Heegaard Floer theory. Indeed, we obtain much stronger
results, which may be of independent interest.
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5.1. Setups of immersed curve invariants. Proposition 3.1 and Corollary 3.3 are motivated by
observation of the immersed multi-curve invariant for 3-manifold with a torus boundary constructed by
Hanselman-Rasmussen-Watson [HRW24, HRW22], usually called curve invariant for short. The curve
invariant is based on bordered Heegaard Floer homology constructed by Lipshitz-Ozsváth-Thurston
[LOT18], whose analogue in instanton theory is still unknown. Using the curve invariant, we can prove
much stronger results than Proposition 3.1. We expect analogous results to hold in instanton theory,
but proofs based on current techniques such as integral surgery formulae are still beyond the authors’
knowledge.

In this subsection, we first review basic facts about curve invariants. We prove results about the
behavior of curves and corollaries in Heegaard Floer theory in the next subsection. We always assume
that the base field is F2 since the bordered theory and hence the curve invariant only work over F2.
We will omit the 3-manifold and the coefficient in the Floer homology for simplicity.

Suppose M is a compact, connected, oriented 3-manifold with torus boundary. We write

(5.1) yHF pMq and γpMq “ tγ0, . . . , γnu

for the multi-curve invariant in [HRW24, HRW22] and the underlying set of immersed curves in BMzz,

where z is a basepoint. Note that yHF pMq consist of compact immersed curves in γpMq with local
systems, where a curve with a local system of dimension k can be roughly regarded as consisting of k
copies of the curve with twists between copies. All known examples from bordered Floer homology
have no local systems, but a general classification theorem about an extendable type D structure over
torus algebra should include ones with nontrivial local systems.

Suppose M0 and M1 are two such manifolds and h : BM1 Ñ BM0 is an orientation reversing
homeomorphism preserving the basepoints zi for i “ 0, 1. Then the gluing theorem states the hat

version of Heegaard Floer homology (over F2) of the glued closed 3-manifold yHF pM0 Yh M1q is

isomorphic to the (immersed) Lagrangian intersection Floer homology of yHF pM0q and hp yHF pM1qq in
BM0zz0. Since we work on the punctured surface, the dimension of the Lagrangian intersection Floer
homology is just the geometric intersection number of the curves, i.e., the intersection number when all
bigons that do not cover the basepoint are canceled by regular homotopy of the curves. Note that a
local system of dimension k contributes to k times the intersection number since we can always move
the twists disjoint from the intersection point. In [HRW24, §7.1], a standard way to cancel all bigons
was introduced, and the resulting curve is called peg-board diagram. Roughly speaking, the curve is
pulled tight as a geodesic under some fixed metric on the punctured torus.

Other than yHF of a closed 3-manifold from gluing, the curve invariant can also be used to compute

the hat and minus versions of the knot Floer homology {HFK and HFK´ of all dual knots in the
Dehn fillings (note that the information is not enough to compute the full knot Floer filtered complex
CFK´; see [Han23a, Han23b] for more construction). More precisely, following [HRW22, §4.3], let µ
be a simple closed curve on BM and let rKµ be the dual knot in the Dehn filling along µ. We consider a
neighborhood disk D disjoint from the curves in γpMq, and replace the basepoint z with two basepoints
z and w. We suppose α intersects D and separates the two basepoints. We always put z on the left of
the curve as in [HRW22, Figure 41].

We define C´p yHF pMq, µq to be the chain complex generated by intersection points of yHF pMq and
µ over F2rU s, with the differential

(5.2) Bx “

8
ÿ

i“0

ÿ

y

U iNω
i px, yq ¨ y,

where Nw
i px, yq is the number of bigons from x to y, counted modulo 2, covering the w basepoint i

times. In general, we do not expect B2 “ 0; again see [Han23a, Han23b] for more discussion. The
z basepoint induces an Alexander filtration A on both complexes by Apxq ´ Apyq “ nzpBq ´ nwpBq

and ApU ¨ xq “ Apxq ´ 1, where nzpBq and nwpBq are multiplicities of basepoints in the bigon B. Let

gC´p yHF pMq, µq be the associated graded chain complex, where we do not count bigons covering z and

do obtain a chain complex. Let g pCp yHF pMq, µq be obtained from gC´p yHF pMq, µq by setting U “ 0.
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Then we have filtered chain homotopy equivalences

(5.3) gC´p yHF pMq, µq » gCFK´p rKαq and g pCp yHF pMq, µq » g{CFKp rKµq,

where the homologies are HFK´p rKµq and {HFKp rKµq, respectively, Both inherited with the Alexander
grading.

To draw the curves more clearly, we can lift them to some covers of BMzz and count intersection
points and bigons with different underlying images. There are usually two choices of lifts. The first
is the universal abelian cover R2{Z2 with respect to some boundary framing. The second is more
standard, which corresponds to the kernel of the composite homomorphism

π1pBM, zq
abelianization

ÝÝÝÝÝÝÝÝÝÑ H1pBM ;Zq
i˚

ÝÑ H1pM ;Zq,

and denoted by sTM,s for each given spinc structure s on M . The group of the deck transformations is

HM “ Impi˚ : H1pBM ;Zq Ñ H1pM ;Zqq.

The second lift is useful to describe the Alexander grading of knot Floer homology. Following
[HRW22, §4.4], let λ be the homological longitude which generates the kernel of i˚, and fix a class
rΣs P H2pM, BM ;Zq with BrΣs “ λ. Let µ be a simple closed curve on BM as above. We assume that

µ ‰ λ such that the dual knot rKµ is rationally null-homologous. Then the set SpincpM,γµq of spinc

structures on the balanced sutured manifold pM,γµ “ µ Y ´µq is an affine space (i.e., torsor) over
H2pM, BM ;Zq – H1pM ;Zq. Let SpincpMq be the set of spinc structures on M , which is an affine space
over H2pM ;Zq – H1pM, BM ;Zq. Note that the fiber of the restriction map SpincpM,γµq Ñ SpincpMq

is a HM -affine space. Since BM is a torus, each ss P SpincpM,γµq has a well-defined first Chern class
(or equivalently, the relative Euler class) in H2pM, BM ;Zq. The half of the pairing with rΣs provides a
function

A : SpincpM,γµq Ñ
1

2
Z,

which provides an Alexander grading on {HFKp rKµq – SFHpM,γµq. We write {HFKp rKµ,ssq for the
summand corresponding to ss P SpincpM,γµq.

On the other hand, we choose s to be the image of ss in SpincpMq. The cover sTM,s can be identified
with H1pBM ;Rq{xλy. There is a natural height function

h : sTM,s Ñ R

given by hpvq “ v ¨ λ. In the computation of g pCp yHF pMq, µq, we can replace the disk D and the two
basepoints z, w by a single basepoint z and the curve µ by a noncompact arc Lµ (as a Lagrangian
submanifold) connecting the basepoint to itself with the same slope as µ. Since the group of deck
transformation is HM , the set of lifts of Lµ is also an affine space over HM , which can be identified
with SpincpM,γµq up to an overall shift. We write Lµ,ss for the lift of Lµ whose midpoint has height
equals to Apssq. Then we have a refinement of (5.3)

(5.4) g{HFKp rKµ,ssq » g pCp yHF pMq, Lµ,ssq,

where we only count intersection points with different underlying images. Though not mentioned

in the reference, it is clear that the Alexander grading summand of gCFK´p rKµ,ssq corresponds to

gC´p yHF pMq, Lµ,ssq. Note that the differentials in gC´ will shift the Alexander grading, and we should
use the lifts of the previous model with z and w to count the differentials.

Note that the filtered chain homotopy equivalence in (5.3) implies an isomorphism between induced
spectral sequences, in particular a relation between the differentials on the first pages.

On the side of gCFK´, the first differential was studied by Sarkar [Sar15, §4] and denoted by Ψ.
There is also another map Φ which can be regarded as the first differential on the spectral sequence
corresponding to the knot with opposite orientation. Roughly speaking, the maps Ψ and Φ are obtained
by counting holomorphic disks passing through the basepoints w and z once, respectively. In Zemke’s
reconstruction [Zem17] (see also [Zem19, §4.2]), these two maps are related to some dividing sets on
K ˆ I Ă Y ˆ I for the given knot K in the 3-manifold Y , which are exactly the dividing sets of the
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contact structures we use to define d1,˘. Hence d1,˘ are indeed analogs of Ψ and Φ (up to mirror
manifolds and hence taking dual spaces and dual maps).

On the side of gC´, we can first use the pig-board diagram of the curve invariant such that there

is no differential on g pC, then bigons with nz “ 0, nw “ 1 correspond to the differential on the first
page, which coincides with Ψ by the equivalence in (5.3). Considering the Alexander grading in (5.4),
we can use any two arcs Lµ,ss and Lµ,ss1 that share an endpoint in the cover TM,s to compute Ψ on
the corresponding Alexander grading summand, where the basepoints z and w are regarded near the
common endpoint and on different sides of the arcs.

For the other map Φ, since we reverse the orientation of the knot rather than the orientation of M
(or the ambient 3-manifold Y ), the symmetry in [HRW22, §3.1] does not apply. The only difference is
to replace λ by ´λ and hence the height functions have opposite signs. From the elliptic involution in
[HRW22, §3.2], the map Φ can be obtained by counting bigons with nw “ 0, nz “ 1.

Finally, let us focus on the special case where M is the complement of a knot K in S3. Then λ is just
the Seifert longitude and rΣs is the class of any Seifert surface which generates H2pM, BM ;Zq – Z. We
have H1pM ;Zq – Z and H1pM, BM ;Zq – teu. Then there is a unique choice of s P SpincpMq and the
cover sTM,s can be identified with the infinite cylinder r´1{2, 1{2s ˆ R with basepoints t0u ˆ pZ ` 1{2q,
where t˘1{2u ˆ R are glued together. To be clear, we will draw the (lift of) curve in

(5.5) pR ˆ RqzpZ ˆ pZ `
1

2
qq,

which is periodic in the first coordinate. We call the first coordinate horizontal and the second coordinate
vertical, parameterized by the meridian of the knot K and the longitude λ, respectively.

Hence the height function is just the projection onto the second coordinate. The height of an arc
Lµ,ss is used to denote the height of its midpoint for short. For p{q P Q Y t1{0u and h P Z ` pp´ 1q{2,
we write

(5.6) Lp{q,h

for the arc of slope p{q and height h. Then the intersection points of the peg-board curve yHF pMq

and Lp{q,h contribute to {HFKp rKp{q, hq, the knot Floer homology of the dual knot rKp{q Ă S3
p{qpKq in

Alexander grading h. Since {HFKpKq with the Alexander grading detects the genus of K, the curve
intersects the vertical arc of height g (i.e., L1{0,g) nontrivially and any vertical arc of larger height

trivially. Moreover, the symmetry of the knot Floer chain complex for knots in S3 implies that the

whole curve invariant yHF pMq is symmetric under the rotation by 180 degrees around p0, 0q (a single
component may be asymmetric).

Since yHF pS3q is 1-dimensional, the gluing theorem says there is only one intersection point (even

with multiplicity from local systems) between the peg-board diagram of yHF pMq and the vertical line
t1{2u ˆ R. By symmetry around p0, 0q, the intersection point must be t1{2u ˆ t0u. Without loss of
generality, we assume γ0 in (5.1) is the component contributing to the intersection point, which must
have a trivial local system by the lack of the dimension. We call γ0 the distinguished component and
other γi the acyclic components. Note that acyclic components all lie in a small neighborhood of
t0u ˆ R.

The name “acyclic” comes from Hom’s result about concordant knots [Hom17, Theorem 1]. From
Hanselman-Watson’s reinterpretation [HW23, Proposition 2], the distinguished component γ0 is a
concordance invariant, and the τ invariant and the ϵ invariant in Heegaard Floer theory can be read
from γ0 easily. Explicitly, suppose γ0 is oriented from left to right and starts at some point on
t´1{2u ˆR. Then the integer τpKq is the height of the first vertical arc in t0u ˆR where γ0 meets, and
ϵpKq P t´1, 1, 0u corresponds to the situation after the intersection with the first vertical arc. When γ0
turns downwards, upwards, or continues straight to wrap around the cylinder, the invariant becomes
´1, 1, 0, respectively. Note that ϵ “ 0 only if τ “ 0, where the curve is a horizontal line. Some examples

of curves and corresponding invariants (which are not necessarily from yHF pMq) can be found in Figure
15.
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τ “ 2 ϵ “ 1 τ “ ´3 ϵ “ ´1 τ “ 0 ϵ “ ´1

Figure 15. Examples of distinguished components

5.2. First differentials on local maxima. In this subsection, we use the setup in §5.1 to study the

first differential Ψ and Φ for the dual knot rKp{q of a knot K Ă S3. The main reason to focus on S3 is

that yHF pS3q is 1-dimensional, so many results can be generalized to knots in other closed 3-manifolds,
with extra care.

We consider the infinite cylinder r´1{2, 1{2s ˆR with basepoints t0u ˆ pZ` 1{2q. To be clear, we lift
it periodically to the plane with punctures (5.5) but still consider intersections and bigons are counted
in the infinite cylinder. A compact curve is an immersed curve with no endpoints on punctures. A
non-compact curve is an immersed curve with endpoints on punctures. We always assume the curves
are in the peg-board diagram mentioned in §5.2, i.e., there are no trivial bigons (i.e., bigon containing

no basepoints) between two curves. Recall that curves in yHF pMq in (5.1) are all compact and the arc
Lp{q,h of slope p{q and height h in (5.6) is a non-compact curve. Though many results hold for general
non-compact curves, we only focus on arcs of shape Lp{q,h for simplicity. We specify the name “arc”
only for some Lp{q,h.

We start with the following obvious lemma for curves.

Lemma 5.1. Suppose L1, L2, L3 are three arcs that form a triangle in the plane (not in the infinite
cylinder) with basepoints, i.e., any two of them share a common endpoint. Suppose the interior of
the triangle does not contain any basepoints. Suppose γ is a compact curve in the plane with any
orientation. If γ intersects L1 at a point a with the orientation pointing into the triangle, then the next
intersection point b with the triangle L1 Y L2 Y L3 along the orientation must exist and lie on L2 Y L3.

Proof. The algebraic intersection number of γ and L1 Y L2 Y L3 is zero, so the number of intersection
points is even. Hence there must be another intersection point other than a. For the next intersection
point b, if b is also on L1, then there is a trivial bigon between a and b, which contradicts the assumption
of the peg-board diagram. □

Remark 5.2. Note that if we project the triangle onto the infinite cylinder, then the interior of the
triangle is not well-defined. Indeed, a triangle on the infinite cylinder can be lifted into two different
triangles in the plane modulo the horizontal translation. This phenomenon corresponds to the two
different bypass triangles for three fixed sutured instanton homologies illustrated in [LY22a, Remarks
4.15 and 4.38]. Note that in the reference, the authors consider the manifolds with opposite orientations
so all arrows between arcs are clockwise with respect to basepoints, while in this paper there is no
orientation reversal so all arrows are counterclockwise, which is compatible with the usual orientations
about bigons in Heegaard Floer theory. Though not used, we always write the arcs in the order such
that the arrows between them are counterclockwise. Hence one may think of an exact triangle between
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the corresponding knot Floer homologies. The correspondence between arrows and bypass maps in
Heegaard Floer theory may be proved by translating the computations of bordered sutured Floer
homology by Etnyre-Vela-Vick-Zarev [EVVZ17, §6] to the language of curve invariants. However, we
do not need such correspondence in this paper, so we leave the verification to the readers.

Recall that an immersed curve has a well-defined tangent line at any point. We define a local
maximum of a compact curve to be a point where the tangent line is horizontal (i.e., constant on the
second coordinate) and above the curve locally (i.e., in a neighborhood of the point). Similarly, a local
minimum of a compact curve is a point where the tangent line is horizontal and below the curve locally.
We set that a horizontal line (corresponding to ϵ “ τ “ 0) has no local maximum and minimum.

Note that we can isotope the curve to create or cancel pairs of a local maximum and a local minimum,
but no cancellation can happen in a peg-board diagram otherwise there are two trivial bigons between
the curve and the horizontal tangent line.

In the peg-board diagram, a neighborhood of local maximum or minimum must contain an intersection
point with a vertical arc L1{0,h. We also regard the height h P Z as the height of the local maximum or
minimum. A local maximum is a global maximum if its height is not less than the height of any other
local maximum. Note that the global maximum of any component of curve must exist and may not be
unique. We also define a global minimum similarly. Given a compact curve γ, we write n`pγ, hq for the
number of local maxima of height h and write n´pγ, hq for the number of local minima of height h.
The definitions of n˘pγ, hq extend to a collection of compact curves with local systems by counting the
points with multiplicities from the ranks of the local systems.

Now we state the main results of this subsection. Suppose M “ S3zNpKq is a knot complement

and yHF pMq is the curve invariant in (5.1) drawn in a peg-board diagram of the infinite cylinder with

basepoints. Suppose γ is a component of the compact curves in yHF pMq. For the slope p{q P Q with

p ą 0 and the height h P Z ` pp´ 1q{2, suppose {HFKp rKp{q, hq is the knot Floer homology of the dual

knot rKp{q Ă S3
p{qpKq in Alexander grading h and suppose

(5.7)
Ψh : {HFKp rKp{q, hq Ñ {HFKp rKp{q, h` pq

Φh : {HFKp rKp{q, hq Ñ {HFKp rKp{q, h´ pq

are differentials constructed by Sarkar [Sar15, §4] corresponding to basepoints w and z, respectively.
We will omit the subscript h if it is clear.

Proposition 5.3. Suppose p{q P Q with p ą 0 and h P Z`pp´1q{2. Suppose γ is an acyclic component
(i.e., γ ‰ γ0). Then we have the following cases related to Figure 16.

(1) If q ą 0, then any local maximum a of height h corresponds to an element

(5.8) xa P {HFKp rKp{q, h`
´1 ` p

2
q such that Φpxaq ‰ 0.

The elements xai for all local maxima ai are linearly independent, so are their images under Φ. In
particular, we have rankΦh`

´1`p
2

ě n`pγ, hq.

(2) If q ą 0, then any local minimum a of height h corresponds to an element

(5.9) xa P {HFKp rKp{q, h`
1 ´ p

2
q such that Ψpxbq ‰ 0.

There are similar linear independence results and we have rankΨh`
1´p
2

ě n´pγ, hq.

(3) If q ă 0, then any local maximum a of height h corresponds to an element

(5.10) xa P {HFKp rKp{q, h`
´1 ´ p

2
q such that Ψpxaq ‰ 0.

There are similar linear independence results and we have rankΨh`
´1´p

2
ě n`pγ, hq.

(4) If q ă 0, then any local minimum a of height h corresponds to an element

(5.11) xa P {HFKp rKp{q, h`
1 ` p

2
q such that Φpxaq ‰ 0.
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There are similar linear independence results and we have rankΨh`
1`p
2

ě n´pγ, hq.

(2)

(1)

(4)

(3)

Φ a

z
w

Φ Ψ

w
z

Φ
a

w
z

Ψ

z
w

Figure 16. local maxima and local minimums

Proposition 5.4. Suppose p{q P Q with p ą 0 and h P Z ` pp´ 1q{2. Suppose γ is the distinguished
component γ0. Then similar results as in Proposition 5.3 hold with the following exception.

(1) If τ ą 0, ϵ “ 1 (i.e., the part of γ disjoint from the vertical arc has a positive slope and it turns
downwards after the first intersection point with the vertical arc from the left to the right) and
p{q ą 2τ ´ 1, then the local maximum a corresponds to τ does not correspond to an element in
(5.8).

(2) If τ ą 0, ϵ “ 1, and p{q ą 2τ ´ 1, then the local minimum a corresponds to ´τ does not correspond
to an element in (5.9).

(3) If τ ă 0, ϵ “ ´1, and p{q ă 2τ ` 1, then the local maximum a corresponds to ´τ does not
correspond to an element in (5.10).

(4) If τ ă 0, ϵ “ ´1, and p{q ă 2τ ` 1, then the local minimum a corresponds to τ does not correspond
to an element in (5.11).

Here the local maximum and local minimum corresponding to τ or ´τ is the one of height τ near the
first or last intersection point with the vertical arc from the left to the right, respectively.

Proof of Proposition 5.3. The proofs of the four cases are similar, so we only prove the first case.
Without loss of generality, we assume a is an intersection point of γ and the vertical arc L1{0,h. We
consider the orientation of γ such that it goes from the left to the right of L1{0,h in the neighborhood
of a.

Then we apply Lemma 5.1 to the point a and the lift of arcs L1{0,h, L0{1,h`1{2, L1{1,h and the lift rγ

in Figure 17, which we denote by rL1{0,h, rL0{1,h`1{2, rL1{1,h, respectively. Note that the choices of lifts
are important by Remark 5.2 and indeed there are two different choices.

Since a is a local maximum, the next intersection point b from Lemma 5.1 cannot be on the lift
rL0{1,h`1{2. So it must be on the lift rL1{1,h. We write this point as b1{1. Then we apply Lemma 5.1 to

the point b1{1 and the lifts of arcs L1{0,h, L0{1,h`1{2, L1{2,h in Figure 17. Note that the lift rL1
0{1,h`1{2 of

34



rL1
0{1

rL1
0{1

rL1
1{0

rLp{q

rLp{q

rL1{2
rL1{1

rL1{0
rL1{p´1q

rL0{1

rL1{1

rL2{1

c2{1

c1{1

cp{q

c1{0

b1{p´1q
a

b1{1

b1{2

bp{q

Figure 17. Sequence of intersection points, where we omit the heights of the arcs

L0{1,h`1{2 in this triangle is different from the previous lift rL0{1,h`1{2. Again from the fact that a is a

local maximum, the next intersection point cannot be on the lift rL1
0{1,h`1{2 and must be on the lift

rL1{2,h, which we write as b1{2. By an obvious induction argument (using different lifts of L0{1,h`1{2),

we can find intersection points b1{n on the lifts rL1{n,h for all numbers n P N, where b1{0 “ a.

Since the curve rγ connects b1{n to b1{n`1 and a lift rLp{q,h`p´1`pq{2 of Lp{q,h`p´1`pq{2 for q ą 0 lies

in between rL1{n0,h and rL1{n0`1,h for some n0 P N, the curve also intersects rLp{q,h`p´1`pq{2 at one point
bp{q for q ą 0. The construction of points bp{q can also be generalized to the case q ă 0 by reserving
the orientation of γ.

From (5.4), for q ą 0, the point bp{q induces an element xa of the desired grading in (5.8). Later we
prove Φpxaq ‰ 0 using the curve interpretation of Φ after (5.8). It is also worth mentioning that for
q ă 0, the point bp{q is the element Ψpxaq in the third case.

Now we reverse the orientation of γ such that it goes from the right to the left of L1{0,h in the
neighborhood of a. Previously we already obtained the intersection point b1{p´1q between rγ and
rL1{p´1q,h. Then we apply Lemma 5.1 to b1{p´1q and the lifts of the arcs L1{p´1q,h, L0{1,h´1{2, L1{0,h in

Figure 17. Note that the lift rL1
1{0,h in this triangle is different from the previous lift rL1{0,h of L1{0,h

where a lies, though the projections are the same.
Since γ is acyclic, it lies in the neighborhood of the vertical arcs. Hence its lift rγ cannot intersect the

lift rL1
1{0,h in the above triangle. Hence, the next intersection point must be on the lift rL0{1,h´1{2, which

we denote by c0{1. Similarly, by induction, we obtain intersection points cn{1 on the lifts rLn{1,h`p´1´nq{2

in Figure 17 for all number n ě N. The main fact we used is that rγ lies in the neighborhood of the

vertical arcs and hence disjoint from the lifts rL1
1{0,h´n in the corresponding triangles. Also, we can

35



find intersection points cp{q on a lift rLp{q,h`p´1´pq{2 for q ą 0 by inserting it in between two lifts
rLn{1,h`p´1´nq{2 for some n “ n1 and n1 ` 1.

In summary, the lift of the curve rγ with the second orientation intersects the lifts of arcs in a sequence
of points

(5.12) bp{q, b1{n0
, b1{pn0´1q, . . . , b1{1, a “ b0{1, b1{p´1q, c0{1, c1{1, . . . , cn1{1, cp{q.

Hence cp{q corresponds to the element Φpxaq ‰ 0 by the interpretation after (5.8).
Finally, for different local maxima, the sequences of points in (5.12) lie in a disjoint part of the lift rγ,

so the corresponding elements are linearly independent. □

Proof of Proposition 5.4. The proof of Proposition 5.3 applies without change. Note that the existence
of cp{q now depends on the fact that p{q ď 2τ ´ 1. □

Now an analog of Corollary 3.3 is obvious.

Corollary 5.5. Suppose K Ă S3 is a nontrivial knot of genus g and let rK1 be the dual knot in S3
1pKq.

Then the maps Φ on {HFKp rK1, gq and the map Ψ on {HFKp rK1,´gq, both from (5.7), are injective.

Proof. We simply apply Proposition 5.3 and Proposition 5.4 to global maxima and minimums (possibly
with multiplicities from local systems). Note that for nontrivial knot K, we have g ě 1. If the first
exception in Proposition 5.4 happens, then τ “ g and p{q ą 2g ´ 1, which is impossible for p{q “ 1{1.
The other exceptions do not happen for similar reasons. □

Indeed we obtain stronger corollaries based on Similar reasons.

Corollary 5.6. Suppose K Ă S3 is a nontrivial knot of genus g and let rKp{q be the dual knot in

S3
p{qpKq. Suppose M “ S3zNpKq. Then we have the following.

(1) The map Φ in (5.7) on {HFKp rKp{q, gq and the map Ψ in (5.7) on {HFKp rKp{q,´gq have at most
1-dimensional cokernel. If the cokernel is nontrivial, then τ “ ˘g and the exceptions in Proposition
5.4 happen.

(2) The total ranks of Φ and Ψ on {HFKp rKp{qq are at least the number n of acyclic components in the

multicurve invariant yHF pMq in (5.1). If the exceptions in Proposition 5.4 do not happen (e.g.,
p{q “ 1{p˘1q), then the ranks are at least the number n` 1 of all components.

(3) If the total rank of either Φ or Ψ on {HFKp rKp{qq is at most one, then there are no acyclic

components in yHF pMq. In such case, we know {HFKpKq has the minimal rank among all knots
concordant to K. Moreover, if either Φ or Ψ vanishes, then there is one local maximum or one
local minimum in the distinguished component, and the exceptions in Proposition 5.4 happen with
τ “ ˘g. In such a case, the knot K is an L-space knot.

Proof. The first two arguments are from Proposition 5.3 and Proposition 5.4 by focusing on global
maxima and global minimums. Note that each component has at least one global maximum and one
global minimum since it is compact. For the third argument, the acyclic components are ruled out
by the second argument. The concordance argument follows from the fact that the distinguished
component γ0 is a concordance invariant [HW23, Proposition 2]. Similarly, if either Φ or Ψ vanishes,
the global maximum or the global minimum must satisfy the exceptions in Proposition 5.4, which
should also be the unique local maximum or local minimum. In such a case, if we pair the curve either
with a compact line of slope p1{q1, or the arc Lp1{q1 with

p1{q1

$

’

&

’

%

ą 2τ ´ 1 τ “ g ą 0;

‰ 0 τ “ g “ 0;

ă 2τ ` 1 τ “ ´g ă 0,

we will obtain |p1| intersection points, which implies that K is an L-space knot. □
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Now we prove the main result of this section.

Theorem 1.4. Suppose K Ă S3. If there exists p{q P Qzt0u satisfying

dim {HFKpS3
p{qpKq, rKp{q;F2q “ dim yHF pS3

p{qpKq;F2q,

then both dimensions must equal to |H1pS3
p{qpKq;Zq| “ |p| and hence K is a (Heegaard Floer) L-

space knot. Consequently, we know K is fibered and strongly quasi-positive [OS05, Ni07, Hed10], and
|p{q| ą 2gpKq ´ 1 [RR17, Corollary 3.6].

Proof. Recall that Φ or Ψ is the differential in the first page of the spectral sequence from {HFKpY,K;F2q

to yHF pY ;F2q for rationally null-homologous knot K Ă Y . Then the theorem follows from the third
argument in Corollary 5.6 where Φ or Ψ vanishes. The fact that S3

p{qpKq is an L-space is from [RR17,

Corollary 3.6]. □

Appendix A. Closed 3-manifolds without 2-torsion

In this appendix, we provide a few families of closed 3-manifolds Y such that I7pY ;Zq has no
2-torsion. We make this collection for the completeness of the current paper, but we believe all of these
examples are known to experts and we claim no originality for the results presented here.

Scaduto [Sca15, Theorem 1.1] constructed a spectral sequence from the reduced odd Khovanov
homology of a knot K to the framed instanton Floer homology I7

`

Σ2p sKq
˘

of the double branched cover

of the mirror sK. As a corollary, when K is a quasi-alternating link, [Sca15, Corollary 1.2] says that
I7

`

Σ2p sKq;Z
˘

is free over Z and has minimal possible rank, and hence has no 2-torsion. In particular,

the double-branched cover of a 2-bridge knot is a lens space Lpp, qq, so I7 pLpp, qq;Zq has no 2-torsion.
Additionally, Agol [Ago23] constructed examples of L-spaces coming from surgeries along chainmail

links. Since his argument only used the results for lens spaces and surgery exact triangles (cf. Lemma
2.2), it applies verbatim to F2 coefficients and hence we have the following proposition.

Proposition A.1. Suppose Y is an L-space obtained from surgery with large enough slopes on negative
alternating chainmail links and partially augmented negative alternating chainmail links that arise from
the proofs of [Ago23, Theorem 3.2 and Theorem 4.2], then

dim I7 pY ;F2q “ dim I7 pY ;Cq “ |H1pY ;Zq|,

and I7 pY ;Zq has no 2-torsion.

Remark A.2. Agol showed that large enough surgery slopes on these links yield L-spaces, for the
technical reason of allowing induction to work. The above lemma works exactly for those L-spaces.
There might be the possibility that small surgery slopes of these links also generate an L-space but we
know nothing about the I7 of such 3-manifolds.

Moreover, we can adapt the proof of [BS18, Proposition 4.12] over F2 since it only uses the surgery
exact triangle. We obtain the following result.

Proposition A.3. Suppose K Ă S3 is a knot and n is a positive integer. If

dim I7
`

S3
npKq;F2

˘

“ dim I7
`

S3
npKq;C

˘

“ |H1pS3
npKq;Zq| “ n,

then for all rational number p{q ě n, we have

dim I7
´

S3
p{qpKq;F2

¯

“ dim I7
´

S3
p{qpKq;C

¯

“ |H1pS3
p{qpKq;Zq| “ |p|,

and I7

´

S3
p{qpKq;Z

¯

has no 2-torsion.

Remark A.4. Other results in [BS18, §4.2] do not apply over F2 directly since they are based on
the adjunction inequality [BS18, Remark 4.14], which is only available over C as mentioned in the
introduction. A natural question from Proposition A.3 is to find the minimal positive real number r0
such that for all slope r ą r0, we have I7 of the corresponding manifolds do not have 2-torsion. From
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Lemma 1.9 and Proposition 1.10, we know r0 P p1, 5s for the trefoil knot but cannot decide it by current
techniques, which already becomes different from the case over C.

Appendix B. 2-torsion for alternating knots

It is well-known to experts that I7
`

S3,K
˘

of an alternating knot K has 2-torsion. However, the
authors have not found a complete computation over Z in the literature so we do this in this section.
We do not claim originality for these results.

Lemma B.1. For any link L in a closed 3-manifold Y , we have dim I7 pY,K;Cq ě dim I6 pY,K;Cq.

Proof. From an unoriented skein relation as in [Xie21, §3], we have the following exact triangle

I7 pY, L;Cq // I7 pY,L;Cq

ww
I7

`

Y, L6;C
˘

gg

From [Xie21, Proposition 5.2] and the connected sum formula for sutured Floer homology (for example,
an instanton version of [Li20, Corollary 4.13]), we obtain

I7
`

Y,L6;C
˘

– IpY,L6;Cq b C2 “ I6 pY,L,Cq b C2.

Then the inequality follows from the dimension inequality from the triangle. □

Theorem B.2. Suppose K is a quasi-alternating knot (in particular, a non-split alternating knot)
[MO08]. Then the spectral sequence from Khovanov homology to instanton homology collapses, and we
have

Khp sK;Zq – I7
`

S3,K;Z
˘

– Zδ`1 ‘ pZ{2qpδ´1q{2,

and ĚKhp sK;Zq – I6
`

S3,K;Z
˘

– Zδ,
where δ “ | detpKq| “ |∆Kp´1q|, Kh and ĚKh are the unreduced and the reduced Khovanov homologies.
For the reduced version, the results also hold for quasi-alternating links.

Proof. Note that quasi-alternating links are thin for Kh and ĚKh over any coefficients. By the universal
coefficient theorem, it is also H-slim in the sense of [Shu21, 1.A]. By Lee’s and Shumakovitch’s work
[Lee02, Lee05, Shu14, Shu21] (in particular, [Shu21, 1.E, 1.G, and 1.I]), for an alternating link K, we
have

dimKhpK;Cq “ δ ` 1 and dimKhpK;F2q “ 2δ.

Moreover, over Z the only possible torsion summand is Z{2. Hence

KhpK;Zq – Zδ`1 ‘ pZ{2qpδ´1q{2.

Also from [Lee02], we know ĚKhpKq – Zδ. Note that ∆Kptq does not depend on the mirror, and neither
does δ. Kronheimer-Mrowka [KM11a, Proposition 1.2 and Theorem 8.2] showed that there are spectral
sequences from Khp sKq and ĚKhp sKq to I7

`

S3,K
˘

and I6
`

S3,K
˘

over Z, respectively, which provide

upper bounds on I7 and I6.
On the other hand, Kronheimer-Mrowka’s results χpKHIpKqq “ ´∆Kptq [KM10a], together with

the second equation in (1.2), provide a lower bound on I6 by the coefficients of ∆Kptq. Since ∆Kptq for
a quasi-alternating link K has alternating coefficients, the lower bound matches with the upper bound
δ (over C coefficients). Since ĚKh is free, the spectral sequence about I6 collapses and we conclude that
the associated graded homology of I6 is Zδ. Since it is free, we also have I6 – Zδ.

Now we assume K is a quasi-alternating knot. From the first equation in (1.2) and the universal
coefficient theorem, we know dim I7

`

S3,K;C
˘

is even. From Lemma B.1 and the fact that δ is odd for
knots, we know

dim I7
`

S3,K;C
˘

ě δ ` 1.
38



Hence the spectral sequence from Khp sKq to I7
`

S3,K
˘

collapses over C. Hence the differential in the
spectral sequence can only have a torsion image. On the other hand, the spectral sequence collapses over
F2 by (1.2) and the result for I6. Since Kh has only Z{2 torsion summand, the differential vanishes over
Z, and the associated graded homology of I7 is Zδ`1 ‘ pZ{2qpδ´1q{2. Potentially I7 and its associated
graded homology could be different, but that cannot happen since the spectral sequence collapses both
over C and F2. Hence, we conclude the result for I7. □
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