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APPLICATIONS

ZHENKUN LI AND FAN YE

ABSTRACT. This is a companion paper to earlier work of the authors, which proved an integral
surgery formula for framed instanton homology. First, we present an enhancement of the large
surgery formula, a rational surgery formula for null-homologous knots in any 3-manifold, and a
formula encoding a large portion of I#(Sg(K)). Second, we use the integral surgery formula to
study the framed instanton homology of many 3-manifolds: Seifert fibered spaces with nonzero
orbifold degrees, especially nontrivial circle bundles over any orientable surface, surgeries on a

family of alternating knots and all twisted Whitehead doubles, and splicings with twist knots.

Finally, we use the previous techniques and computations to study almost L-space knots, i.e., the
knots K < S% with dim I#(S2(K)) = n + 2 for some n € N;. We show that an almost L-space
knot of genus at least 2 is fibered and strongly quasi-positive, and a genus-one almost L-space
knot must be either the figure eight or the mirror of the 52 knot in Rolfsen’s knot table.
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1. INTRODUCTION

Sutured instanton homology SHI(M,~) for a balanced sutured manifold (M, ~) was introduced by
Kronheimer-Mrowka [KM11b] and it leads to many important instanton invariants of 3-manifolds and
knots. Among them the framed instanton homology I*(Y") for a 3-manifold Y and the instanton knot
invariant KHI(Y, K) for a knot K < Y are the two most important ones. It has been known that
the framed instanton homology is closely related to the SU(2)-representations of the fundamental
group 71(Y) and hence understanding its structural property and computing its dimension is an
essential task in the study of instanton theory. However, the fact that instanton Floer homology
is constructed based on a set of partial differential equation makes this task very difficult. Some
previous computational results were obtained in [Scalbl [LPCS20l [BST9l [BS21].

Motivated by the conjecture proposed by Kronheimer-Mrowka [KMI10b] that framed instanton
homology and the hat version of Heegaard Floer homology are isomorphic to each other, and the
known structural properties in the Heegaard Floer theory established by Ozsvath-Szabd [OS04]
0S08, [0S11], the authors of the current paper have established many structural properties that
relates the framed instanton homology to instanton knot homology:

(1) In [LY21Dbl [CY2Ta], we established a decomposition of SHI(M,~) along H,(M;Z), and showed
that the enhanced Euler characteristic associated to this decomposition equals to the Euler
characteristic of SFH(M,~) with respect to the spin® decomposition.

(2) In [LY21d], for a rationally null-homologous knot K < Y, we constructed two differentials d and
d_ on KHI(Y, K) so that the homologies are isomorphic to I*#(Y’). Using those differentials, we
constructed some complexes called bent complexes whose homologies computing I*(Y;,(K)),
where Y, (K) is obtained from Y by Dehn surgery along K with a large coefficient n.

(3) In |[LY22b], we established a formula based on the bent complexes that computes I*(Y,, (K))
for any nonzero integral m-surgery.

Many applications already have been found based on this work: the proof that m (S®\L) for
almost all link L admits an irreducible SU(2)-representation in [XZ21], the proof that 7 (S5(K)) for
any nontrivial knot admits an irreducible SU(2)-representation in [BLSY21], a strong restriction on
the Alexander polynomial A (t) for any instanton L-space knot K in [LY21c|, and the computation
of I*(S3(K)) for any genus-one quasi-alternating knot K in [LY21d], etc.

In this paper, we present more applications of our previous work from (1) to (3), further
demonstrating the power of these tools in dealing with the Dehn surgeries of knots: we upgrade the
integral surgery formula proved in [LY22b| to a rational surgery formula; we study the 0-surgery for
knots inside S3, which is a missing case in [LY22b]; we study almost L-space knots, which admit
a surgery with next-to-minimal framed instanton homology, and we present the computations of
many new families of the framed instanton homology of 3-manifolds, including most Seifert fibered
3-manifolds with non-zero orbifold degrees, the Dehn surgery along a large family of alternating
knots and all twisted Whitehead doubles, and splicings of the complement of a twist knot with the
complement of an arbitrary knot in S$3. Below, we give an outline of the contents of individual
sections, providing more details of these results.

Section We review notations and results about surgery formulae in [LY21c, [LY22bh]. We
truncate the integral surgery formula to make them simpler for further usage. As a byproduct, we
weaken the assumption on the large coefficient in the large surgery formula. Especially, when K is
null-homologous, the integer 2¢g(K) — 1 is large enough to apply the large surgery formula, while in
[LY21c] the minimal integer is 2g(K) + 1.
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Section [3] We establish a rational surgery formula for all null-homologous knots in instanton
theory. The proof is similar to that in Heegaard Floer theory [OS11]. Suppose K < Y is a null-
homologous knot. The rational surgery along K can be interpreted as the integral surgery along a
knot Ky < Y#L(p,q). The knot Ky is obtained by the connected sum of K and a core knot in
L(p,q) (whose complement is a solid torus) for (p,q) chosen according to the surgery slope. We
establish a connected sum formula for the differentials on bent complexes in such case and then
apply the integral surgery formula to complete the proof.

Section The statement of the integral surgery formula in [LY22b] excludes the case of 0-surgery,
i.e. the filling slope is the boundary of a Seifert surface. However, for a knot K — S2, we can
still understand a large portion of I*(S3(K)) by examining an extra grading: After performing
the 0-surgery, the Seifert surface of K is capped off by the meridian disk of the filling solid torus,
which becomes an essential closed surface in Si(K). From [BS19, Section 2.6], this surface induces
a Z-grading

g(K)-1
(1.1) FSHE) = @ IHSHE),s).
s=1—g(K)
In this case, the integral surgery formula can be stated and proven grading-wise. As a result, we
could understand I*(S3(K), s) for all s but 0.

The next three sections are about computations. To apply the integral surgery formula for a
specific knot, there are two main tasks to solve:
(1) To compute differentials dy on KHI(Y, K);
(2) To find the isomorphism H(KHI(Y,K),d,) ~ H(KHI(Y,K),d_) in the statement of the
surgery formula (c.f. Theorem .

In the following three sections we present many methods to deal with the above task (1) and (2).

Section [5] We deal with the borromean knot as in Figure [T and the connected sums of a few
copies of them. Any such knot K is inside a 3-manifold Y that is the connected sum of a few copies
of ST x S2. For this special families of knot, we have

KHI(Y,K) = I*(Y)
so task (1) is trivial. Moreover, the H; (Y)-action in this case is essential: we have an identification
INY) = A*H (Y).

Hence we can regard all related instanton Floer homology groups as modules over the ring A*H; (Y)
and the task (2) can be done via the module structure.

It is worth mentioning that prior to the current paper, most computations of I*(Y) are for
rational homology sphere Y, while our computations for (connected sums of) Borromean knots,
up to the author’s knowledge, provide a first family of knots inside 3-manifolds with positive first
Betti number for which the framed instanton homology of their Dehn surgeries can be computed
systematically. It is well-known that the nonzero integral surgeries of connected sums of Borromean
knots give nontrivial circle bundles over orientable surfaces. Hence we obtain the following.

Theorem 1.1. For any g > 1, m # 0, suppose Y9 is the circle bundle over a surface of genus g
with Fuler number m. We have the following.
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FIGURE 1. The Borromean knot K inside S! x S24S' x §2. The two copies of
S1x 52 come from the zero surgeries on the two (black) components of the Borromean
link.

(1) If Im| = 29 — 1, then
dim I*(Y9) = 229 . |m).
(2) If |m| = 21 with | < g — 1, then

g—1l—15-1 g—Il—1
2 2
dim I4(Y9) = 229 - |m| + 4 - Z(g>+2~ (9).
1
=0 =0

j=1 !

(8) If Im| = 21 — 1 with | < k — 1, then
g—lj—1
2
dim I*(Y9) = 229 . |m| + 4 - ( g)

Remark 1.2. In [OS08, Theorem 5.5], Ozsvath-Szabé provided a formula for HF

red(ng,) by the
integral surgery formula for HEF't.

Furthermore, we can recover any Seifert fibered space with nonzero orbifold degree by a non-zero
integral surgery along the connected sum of Borromean knots and suitable core knots in lens spaces.
We also use the A*Hy (Y )-module structure to solve task (2). As a result, we prove the following
theorem, which generalizes Alfieri-Baldwin-Dai-Sivek’s result for Seifert fibered manifolds that are
rational homology spheres [ABDS20), Corollary 1.3].

Theorem 1.3. Let Y be a Seifert fibered space over a genus g orbifold with Seifert invariants
(m,r1/v1,...,70/Un). Suppose the orbifold degree is

r
degY =m + Z; i
If degY # 0 and ged(vs,v;) =1 for any i # je {1,...,n}, then
dime I4(Y) = dimg, HE(Y).
Remark 1.4. Tt is possible to compute dimg¢ I*(Y") in Theorem explicitly as in [OSTI, Theorem
10.1]. We need the condition degY ## 0 because we do not have a zero-surgery formula for knots

inside general manifolds and degY = 0 corresponds to the zero-surgery on the connected sum.
We need the condition ged(v;, v;) = 1 because we want the first homology of the complement of
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the connected sum to be torsion-free, so that we can use the grading from the Seifert surface to
capture all information in the spin® decomposition of Heegaard Floer theory. This condition could
be removed if we utilize the work in [LY21a] to obtain a further composition of our integral surgery
formula.

Section [6} We also study more families of knots inside S®. Since now there are isomorphisms
H(KHI(S® K),dy) ~ HKHI(S® K),d_) = I*(S®) = C,

the choice of the isomorphism between them is only up to a scalar. Hence task (2) is trivial, and all
we need is to deal with task (1).

It is well-known that alternating knots are thin in the Heegaard Floer theory [OS03]. From
Petkova’s classification of thin complexes [Pet13] Section 3.1], the knot Floer complex of an alternating
knot are fully determined by its Alexander polynomial and the tau invariant (which is related to
the signature for alternating knots). Since there is no known integral Maslov grading in instanton
theory, we do not have a proper definition of thin knots in instanton setting.

Instead, we can consider knots whose two spectral sequences from K HI(S3, K) to I*(S®) collapse
on the second pages, i.e. only differentials d; + are nontrivial. We call such knots have torsion
order one (c.f. Definition . For knots having torsion order one, we have similar classification of
complexes involving d+ as the thin complexes, and hence the complexes are again fully determined
by the Alexander polynomial and the tau invariant in instanton theory.

In oder to prove that some families of knots have torsion order one, we make use of the oriented
skein relation in instanton theory studied in [Lim10, [KM10a]. Unlike the original setup, where we
have an oriented smoothing of the crossing to derive a link in S2, we consider its knotification, or
equivalently a knot inside S x S2.

This idea of using oriented skein relation works for a large family of alternating knots. In
particular, we can deal with the family of knots as shown in Figure [2] The signs of the crossings are
unusual because the induction starts with the torus knots T'(2,2n + 1) (i.e. a; = 0 for all ), whose
crossings are all positive. We prove those knots have torsion order one and then we can compute
the framed instanton homologies on their surgeries.

LR

oo o a2n+1

J

FIGURE 2. The knot K(a1,...,a2,41).

Theorem 1.5. Suppose K = S% is a knot as shown in Fz’gure@ so that
a; =20 foralli=1,...,2n+ 1, and
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#{ia; =1} <n+1.
Then we have g(K) = n and for any r = p/q € Q\{0} with ¢ = 1, we have
Ak @)]] = 2n—3)

q
5 Hlp—q- (20— 1),

dim I#(S3(K)) = dimg, HF(S(K)) =

where || - || is the sum of absolute values of coefficients.

Remark 1.6. The one-dimensional argument that task (2) is trivial for knots inside S® can also be
generalized to a knot K in any instanton L-space Y. If Hy(Y\N(K);Z) is torsion-free, then we
may use the grading from the Seifert surface to decompose our integral surgery formula, so that the
one-dimensional argument can be applied to each summand. If H;(Y\N(K);Z) is not torsion-free,
we could utilize the work in [LY21a] to obtain a decomposition, but that needs a further study
between the interaction of the decomposition and the construction of the integral surgery formula

(c.f Remark [L.4).

Section[7] We also use the techniques involving oriented skein relation to study twisted Whitehead
doubles.

Theorem 1.7. Suppose K = D; (J) is the t-twisted Whitehead double of J with positive clasp; see
Figure @ Suppose T is the instanton tau invariant and T',, = d(S*\N(J)) consist of two copies of
curves with slope —n. Then we have the following.

(1) KHI(S® K,1) =~ SHI(S*\N(J),T'_,).
(2) 71(K) = {1 t<2-nl)

o t=2-7(J)
2-dim SHI(S3\N(J),T_,)F1 t<2-77(J)
2-dim SHI(S*\N(J),T_;) +1 t=2-7;(J)

(3) dim I4(S%, (K)) = {

FIGURE 3. Whitehead double.

Remark 1.8. According to [BS21, Theorem 1.1], the data provided in Theorempart (3) is enough
to compute the framed instanton homology of all nonzero rational surgeries of the twisted Whitehead
doubles with positive clasps. Also, note we have

Dn(K) = D%, (K),

where K is the mirror of K. So we also know all the information for twisted Whitehead doubles
with negative clasps.
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Theorem can also be applied to study splicings with knot complements of twist knots. Note
that twist knots K, are the positively clasped n-twisted Whitehead doubles of the unknot.

Theorem 1.9. Suppose K, is the twist knot. Suppose J < 83 is a non-trivial knot. Let Y be
obtained by gluing the complement of K, with the complement of J so that the gluing map sends the
meridian of one knot to the longitude of the other and vice versa. Let Tg < 0(S3\N(J)) consist of
two Seifert longitudes. Then

o () — {2l G SHISH V(). ) +1 () <0
o ") jnl -2 dim SHI(SP\N(J),To) — 1) + [1 + 0| m1(J)>0

Remark 1.10. From [GLWT9l Section 5.2], we have the following equality for n € Z (c.f. Lemma
2.28)
dim SHI(S*\N(J),T,) = dim SHI(S*\N(J),T _ar,(rc)) + |0 + 277(K)|.

So for a knot K < 53, as long as we know its 77 and dim SHI(S*\N(J),T,,) for any one n € Z, we
obtain the dimensions for all n € Z. Furthuermore, from Theorem [I.7] and Theorem [I.9] we obtain
the framed instanton homology of Dehn surgeries along all of their twisted Whitehead doubles as
well as the splicing with the complements of the twist knots. Here is the list of knots where all such
data are known.

e Genus-one quasi-alternating knots (c.f. [LY2Id, Section 6]).
e Instanton L-space knots (c.f. [LY2Ic, Section 5]).
¢ Knots described in Theorem (c.f Section []).

Section 8| Finally, we study almost L-space knots in S3. A knot K < S? is called an almost
(instanton) L-space knot if it is not an instanton L-space knot and there exists n € N so that

(1.2) dim I*(S3(K)) = n + 2.

Note that n + 2 is the second minimal value of the dimension since the FEuler characteristic is n
[Scalbl Corollary 1.4]. See [BS22a] for the results in Heegaard Floer theroy.

Similar to the previous work on instanton L-space knots [LY21c], we can impose strong restrictions
on almost L-space knots. Moreover, we can classify all genus-one almost L-space knots.

Theorem 1.11. Suppose K < S2 is an almost L-space knot. Then we have the following.
(1) If g(K) = 2, then K is fibered, strongly quasi-positive, and 77(K) = g(K).
(2) If g(K) = 1, then K is either the figure eight or the mirror of the ba knot in Rolfsen’s knot
table (with signature —4, denoted by 5 ).

A direct corollary of Theorem [I.11]is the following.

Corollary 1.12. Suppose K = S® is a knot. Suppose further that
dim I*(S3)(K) = 3.
Then K is either the left-handed trefoil, the figure-eight, or the knot 5.

The proof for g(K) > 2 largely depends on our previous work in [LY21d, Section 5]. The
classification of genus-one almost L-space knots are more complicated. We first proved that
KHI(S3 K) is 1- or 2-dimensional in the top Alexander grading, for which we know a list of all
possible knots. If the top grading is 1-dimensional, then the knot is fibered [KMI10b), Corollary 7.19].
It is well-known that the trefoil and the figure eight are the only genus-one fibered knots. If the top
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grading is 2-dimensional, recently Baldwin-Sivek [BS22Db] classified all such knots in the Heegaard
Floer setting. According to [LY22c|, the same results applied to the instanton setting. This also
leads to the following theorem, which is a complete classification of genus-one nearly fibered knot in
terms of instanton knot homology.

Theorem 1.13. Suppose K < S2 is a genus-one knot with
dim KHI(S? K,1) = 2.
Let J be the right-handed trefoil. Then we know the following.
(1) K = 59 or its mirror if and only if
dim KHI(S* K) =1.
(2) K is the knot 15143502, Dy (J) or their mirrors if and only if
dim KHI(S® K,1) =9 and Ag(t) =2t — 3+ 2t~

(3) K is one of the pretzel knot P(—3,3,2n + 1) for some n € Z, D3 (J), or their mirrors if
and only if

dim KHI(S® K,1) =9 and Ag(t) = 2t +5— 2t~ ",

Remark 1.14. Prior to the computation in this paper, due to Baldwin-Sivek’s work [BS22b], we
know that if K is genus-one and dim K HI(S3, K,1) = 2, then K must be one of the knots listed
in Theorem Furthermore, we have already known that dim K HI(S3, K) = 7 for K = 55 and
dim KHI(S? K,1) =9 for K = P(=3,3,2n + 1) and K = D (J). The last piece for the above
complete classification is the computations for D (J) and 15n43522. This is finished in Section
and Section [8] respectively, via studying their Dehn surgeries.

Acknowledgement. The authors thank John A. Baldwin and Steven Sivek for introducing us
to almost L-space knots. The authors also thank Ciprian Manolescu, Thomas E. Mark, Tomasz
Mrowka, and Jacob Rasmussen for helpful comments and valuable discussions.

2. PRELIMINARIES ON SURGERY FORMULAE

2.1. Conventions. If it is not mentioned, all manifolds are smooth, oriented, and connected.
Homology groups and cohomology groups are with Z coefficients. We write Z,, for Z/nZ and Fs for
the field with two elements. If there is no subscript for dim, then it means dimc.

A knot K c Y is called null-homologous if it represents the trivial homology class in H;(Y;Z),
while it is called rationally null-homologous if it represents the trivial homology class in H; (Y; Q).

For any oriented 3-manifold M, we write —M for the manifold obtained from M by reversing the
orientation. For any surface S in M and any suture v < 0 M, we write S and ~ for the same surface
and suture in —M, without reversing their orientations. For a knot K in a 3-manifold Y, we write
(=Y, K) for the induced knot in —Y with induced orientation, called the mirror knot of K. The
corresponding balanced sutured manifold is (—=Y\N(K), —vk).

2.2. Sutured instanton homology for knot complements. For any balanced sutured man-
ifold (M, ~y) [Juh06l Definition 2.2], Kronheimer-Mrowka [KM10bl Section 7] constructed an isomor-
phism class of C-vector spaces SHI(M,~). Later, Baldwin-Sivek [BS15] Section 9] dealt with the
naturality issue and constructed (untwisted and twisted vesions of) projectively transitive systems
related to SHI(M,~). We will use the twisted version, which we write as SHI(M,~) and call
sutured instanton homology.
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Moreover, there is a relative Zs-grading on SHI(M, ) obtained from the construction of su-
tured instanton homology, which we consider as a homological grading and use to take Euler
characteristic.

Definition 2.1. Suppose K is a knot in a closed 3-manifold Y. Let Y (1) := Y\B? and let § be
a simple closed curve on Y (1) =~ S2. Let Y\N(K) be the knot complement and let I',, be two
oppositely oriented meridians of K on d(Y\N(K)) = T?. Define

IY(Y) := SHI(Y (1),6) and KHI(Y, K) := SHI(Y\N(K),T,,).

From now on, we will suppose K c Y is a rationally null-homologous knot and fix some notations.
Let p be the meridian of K and pick a longitude A (so that A p = 1) to fix a framing of K. We will
always assume Y\N(K) is irreducible, but many results still hold due to the following connected
sum formula of sutured instanton homology [Lil8a, Section 1.8]:

SHI(Y'#Y\N(K),7) = I*(Y") @ SHI(Y\N(K), 7).

Given coprime integers r and s, let I',/; be the suture on d(Y'\N(kK')) consists of two oppositely
oriented, simple closed curves of slope —r/s, with respect to the chosen framing (i.e. the homology
of the curves are +(—ru + sA) € H1(0N(K))). Pick S to be a minimal genus Seifert surface of K.

Convention. We will use p to denote the order of [K] € H1(Y), i.e., p is the minimal positive
integer satisfying p[K| =0¢€ H1(Y). Let ¢ = 0S - A and let g = g(S) be the genus of S. When K is
null-homologous, we always choose the Seifert framing A = dS. In such case, we have (p,q) = (1,0).

Remark 2.2. The meanings of p and ¢ follow from [LY22b], but are different from our previous

papers [LY22al, [LY21c]. Before, we used i and A to denote the meridian of the knot K and the
preferred framing. When 0S5 is connected, it is the same as the homological longitude A in previous
papers. Hence p and ¢ in this paper should be ¢ and ¢g in previous papers.

For simplicity, we use the bold symbol of the suture to represent the sutured instanton homology
of the balanced sutured manifold with the reversed orientation:

L= SHI(—(Y\N(K)), _Fr/s)'

When (r,s) = (£1,0), we write I, ;s = I';,. When s = £1, we write I', = T'y,)1 = ['(_ppy(—1)- We
also write I', and I',, for the corresponding sutured instanton homologies.
Also, we write
Y, s i=IH-Y_,/s(K)),
and in particular
Y, = I*(—=Y_,(K)) and Y := I*(=Y).
We always assume that S has minimal intersections with I, ;;. By work of [Lil9], the Seifert

surface S induces either a Z-grading or a (Z + %)—grading on I', /s, depending on the parity of the
intersection number 05 - (sA — ru). We write the graded part of T',/, as

(I‘r/sai) = ﬂ(_(Y\N(K))a _Fr/sv sz)

withieZ orieZ + %, depending on the parity of the intersection number.

For simplicity, we omit the definitions of bypass maps ¢} , and surgery maps Fy,,Gp,Hy,Ap—1,B,-1,Cp,
in [LY22D, Section 2.2] and only list their properties as follows. The proofs and references can be
found in [LY22b] Section 2.2].
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Lemma 2.3. We have (T, /,,i) = 0 when

lrp —sq| — 1
e

Lemma 2.4. For any n € Z, there are two graded bypass exact triangles

li| > g+

VY g1 .
(rnyl + n+1vl)
n41
qu\ //+H
; np q
;u
n
—,n+1 .
(F n+1vl)
" n+1
\ /
Ty,i+ "51)

where the maps are homogeneous with respect to the homological Zs-gradings.

Definition 2.5. The maps in Lemma are called bypass maps. The ones with subscripts +
and — are called positive and negative bypass maps, respectively. We will use + to denote one
of the bypass maps. For any integer n and any positive integer k, define

wn-Hc 1

n n .
otk = oo g Ty = Do

Lemma 2.6. For any n € Z, we have the following commutative diagrams up to scalars.

w n+2
+,n+1 + m
ry, ——=T.1 rnjo————T,
P i ertl, wrt? k
it
Fn+1 E— Fn+2 r %‘ Fn

Lemma 2.7. For any n € Z, we have the following commutative diagrams up to scalars

er n+1 w— ,m+1
r, ——— >T,.. r, ———  >T,..
w:\ j’rﬂrl w;\,n\ %nﬂ
r r
M H
’/’+ n+1 L n+1

n+1 n+1
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Lemma 2.8. For a knot K €'Y and n € Z, there are two graded bypass exact triangles

1
wz 2no1
(I‘n 1, + np q r2'7L2—17i)
k /
(n— 1)17 a) o
n:z_
Y gna
n )
(Tor,i — 2250) (T2s i)
o 2n—1
A

Lemma 2.9. For a knot K €'Y and n € Z, there are commutative diagrams up to scalars

m

2n 1
+,n—1 P
s — + n
I‘ F7) 1 Fn
n—1
- e
n—1
¢7 2n—1 n
T2
L, ———>T Yie p
2 7

r R —— ]_-‘ n n—1
1[1:#\ /Irb,nl L /n,n
r,

+n1

L,
2n—1 2n—1
w+ . 1 . 1
,n— —n
T,  — " Ta T,  — "' T

= =
n—1 2n—1 n—1 2n—1
ﬁbk o 2 w\
—n

r,

Lemma 2.10. For any n € Z, we have the following exact triangles

An—1
r,— "™ _p r, 1.,
\ /n+1 Cn Al

Lemma 2.11. For any n € Z, we have the following commutative diagrams up to scalars

11
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wi,nJrl E,nJrl
Fn > Fn-‘rl Fn > Fn-‘rl
& %+1 k %:Jrl
Y Y
wz,'n.‘i»l wz,nJrl
'y ——I'wa ' —— I

:NAI ;7\/%1
Y Y

Lemma 2.12 ([LY22al Lemma 4.17, Proposition 4.26, Lemma 4.29 and Proposition 4.32]). Let F,
and G,, be defined as in Lemma[2.10 Then for any large enough integer n, we have the following
properties

(1) The map G,_1 is zero and F,, is surjective. Moreover, for any grading

np—q—1 np—q-—1

N

the restriction of the map

3
L

F,:P@,io+i) > Y

<
Il
=}

is an isomorphism.
(2) The map F_, 1 is zero and G_,, is injective. Moreover, for any grading

g_np—&-q—lgi <np+q—1

~x - - ]-,
9 0 5 g—p+
the map
p—1
ProjoG_,:Y — @(F_n,io +1),
i=0
is an isomorphism, where
p—1
Proj:T_, » P (T_n,io + 1)
i=0

is the projection.

Lemma 2.13. For any n € Z, let the maps H, and % , ., be defined as in Lemma and
Lemma 2] respectively. Then there exist c1,cy € C\{0} so that

H, = Clrl/Ji,nJrl + C2wﬁ,n+1

Convention. Though maps between projectively transitive systems are only well-defined up to
scalars in C\{0}, in [LY22b| Section 2.3], we introduced a way to fix the representatives of the systems
and the scalars of maps between them. Hence we can consider sutured instanton homologies used in
this paper as actual vector spaces and all commutative diagrams above hold without introducing
scalars except the second commutative diagram in Lemma[2.6] Moreover, we can set the scalars
c1 =1and ¢co = —1 for any n € Z in Lemma [2.13
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2.3. Integral surgery formulae. Suppose K — Y is a rationally null-homologous knot with a
Seifert surface S. Suppose (), p1) is the chosen framing for K and (p,q) defined as in Section
Then we state two versions of integral surgery formulae, one from the sutured theory and the other
from the bent complex.

Theorem 2.14 ([LY22bh, Theorem 3.1]). Suppose m is a fized integer such that mp—q # 0, i.e., the
suture 'y, is not parallel to 0S. Then for any large enough integer k, there exists an exact triangle

].-‘2m+2k 1 —>Fm+2k 1

N

2m+2k—1

_ ot -
where ™ = Tk T Tk and

+ _ gm+k 2
Tk = vy om+2k—1© 1/’1,m+k

are compositions of bypass maps. Hence we have an isomorphism
Y., =~ H(Cone(n) , + 7)) = ker 7 @ coker .

In [LY21c, Section 3.4], for any rationally null-homologous knot K < Y, we constructed two
spectral sequences {E, ;,d, t}r>1 and {E, _,d, _},>1 from T, to Y, where the Z-grading shift of
d, + is £rp. Sketchly, we obtain two spectral sequences from the following unrolled exact couples
about bypass maps

1 72
Y i ’l’i n vy

(2.1) <~ Tuis
+ n w+ n—1 er n—2
:+“1 1 » ¢i “1

The spectral sequences are independent of the choice of n. Then we lift the spectral sequences
to filtered chain complexes with differentials d; and d_ by fixing an inner product on I';,. By
construction we have

H(T,,dy)~HT,,d_)=~Y.

Definition 2.15 ([LY21c, Construction 3.27 and Definition 5.12]). For any rationally null-homologous
knot K < Y, let B*(K) be the complexes (', dy ). For any integer s, define the bent complex

A(K,s) = (@(Fw s+ kp),ds),

keZ
where for any element z € (T, s + kp),
d+ (ZC) k> 0,
de(z) =< dy(z) +d_(z) k=0,
d_(z) k <0.

Let B(K, s) be copies of B¥(K). Define
7t(K,s): A(K,s) - BT(K,s) and 7 (K,s) : A(K,s) - B~ (K, s)
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by
r k=0,
0 k<0,

r k<0,

where z € (T'y, s + kp). Define

T (K) @D A(K,s) — (—BBi(K,s)

SEL SEL

and 7 (K, s)(z) = {

by putting 7% (K, s) together for all s . We also use the same notation for the induced map on
homology. If K is fixed, we will omit it in A(K,s), B¥(K,s) and 7+ (K, s).

Theorem 2.16 (|[LY22bl Theorem 3.18]). Suppose m is a fized integer such that mp —q # 0. Then
there exists a grading preserving isomorphism

En: @ HB(s) > @HB (s+mp—q))

SEL SEL
so that
Y, =~ H(Cone(ﬂ' +Enont P H(A(s)) — (—BH(B(S))))
SEL SEL

Remark 2.17. Theorem is a little stronger than Theorem when we consider the A* H,(Y; C)-
action on the sutured instanton homology. From Corollary @, the action is trivial on I'), of the
Borromean knot, and hence is trivial on the bent complex. But it is nontrivial on I',, by Lemma [5.3
In this paper, we will use both versions of surgery formulae.

2.4. Truncation of the integral surgery formulae. In this subsection, we will use the following
algebraic lemma to truncate the integral surgery formula.

Lemma 2.18. Suppose (C,d¢) is a chain complex and suppose C = DOE®F. For A,B € {D,E, F},
we write dy : A — B for the restriction of do. We write elements in C' as column vectors. Suppose
dc has the form

0 d2 o
de=[0 0 0
0 df dF

where dg is an isomorphism. Then we have an isomorphism
H(C,dc) =~ H(F,d%).
Proof. We have a short exact sequence
0-D®E—->C—->F—0
which induces a long exact sequence. The assumption on d¢ implies H(D @ E) = 0 and hence
H(C)~ H(F). O
We also need some structural lemmas for sutured instanton homologies.

Lemma 2.19. Suppose K 'Y is a framed rationally null-homologous knot. Suppose n € Z so that
(n—1)p— q = 2g, then we have the following.

(1) When |i| > "2=2=1 + g, we have (T, i) = 0.
(2) When "’FT’H +g=izg— ”I’%‘H, we have an isomorphism

n = . P
w?m-&-l c (T, £1) = (Dpgr, Ti £ 5)
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(8) When "’FT‘H —g=i,j=>9— "”%’71 and i — j = p, we have an isomorphism

(W™ i) o iy (D) = (T ).

9=l <, < "pf‘kl — g —p+ 1, the restriction of the map

(4) When g — =~

Fn.@ T,,ioc+i) >Y

=0
is an isomorphism.

Proof. Part (1) follows directly from Lemma Part (2) and (3) follows from Lemma and
Lemma Part (4) follows from [LY22D, Lemma 2.19 part (1)]. |

Lemma 2.20. Suppose K 'Y is a framed rationally null-homologous knot. Suppose n € Z so that
(n—1)p—q > 2g. Then we have the following.
. (2n—1)p—2¢—1
(1) When |i| > “—2—=0— 4 g, we have

(Cousi) = 0.
(2) When % +g=i>g— 2, we have an isomorphism

2n—1

W—1m+q)
5 .
(3) When m_l)# —g=izg-— (2"_1)#, we have an isomorphism
where A(i) is the bent complex defined as in Defintion ,

Proof. Part (1) follows directly from Lemma Part (2) follows from Lemma and Lemma [2.19]
part (1). Part (3) follows from [LY21d, Theorem 3.23]. O

Lemma 2.21. Suppose K < Y is a framed rationally null-homologous knot. Suppose wi_k 18
defined as in Theorem . Let Wilk be the restriction of ﬂ'i,k on (T 2m2ko1 ,1). Then we have the
following.

(1) We have

+,i .
Imwm < (FerQk,l,Z +

mp —q,
5 )

(2) Wheni> 232 4+ g, we have 71'i .

(8) When i > E5* + g, the map 7r+ 2" is an isomorphism.

Proof. Part (1) follows directly from grading shifts in Lemma and Lemma For the grading i
in part (2), by Lemma 2.8 and Lemma we have

2m+2k—1
2

Fom+k 0

and hence wi T — 0. Part (3) follows from Lemma part (2) and Lemma part (2). O

Proposition 2.22. Suppose m € Z so that mp — q # 0. Then for any large enough integer k, we
have the following.
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(1) If (m — 1)p — q + 2 < 2g, then

Y,, = H(Cone(ﬂ" P T 2miae-1, ) — @ (I‘m+2k_1,i))),

lil<25t+g Jij < G=mipta=l 4 g
Elig—1
~ H<Cone(ﬂ'” @ H(A®s)) — P H(B(s)))>
[s|<Z5 +g s=—251+1—mp+q—g
(2) If (m—1)p—q+ 2= 2g, then
%+g—1 prl-f-g—l
Y, = (—D (F 2m+22k71 s Z) =~ (—D H(A(S))
iz%—mp-&—q-&-g s:%l—mp-kq-&-g
Here ' and © are the restrictions of m and 7~ + Z,, o™ as defined in Theorem and Theorem

216

Proof. This is a reduction of Theorem [2.14 and Theorem [2.16] We only prove the first isomorphism
in each case. The proof of the second isomorphism follows directly by the reformulation of the
integral surgery formula by bent complexes in [LY22h, Section 3.3]. 4

From Lemma the grading shift of Fiﬁk is #5=1. When i > p—;l + g, we have ﬁ;lk =0 and

7r;l1k is isomorphism. Let C; be the total mapping cone in Theorem and let

D, = (—B (F2m+22k—1,i) and F; = @ (Trnsok—1,17).

i~ p—1 i~ p—1_mp—gq
1>5—=+g 1> ——5—+tg

Then 7 restricts to 7, , on D and induce an isomorphism of D = E. Then we apply Lemma to
remove D; @ E; from Cy. Let Cy be the quotient Cy /(D1 @ E). Since W;Zk is also an isomorphism
for i = % + g, we can apply Lemma again to remove

1 1 _
+g) and By = (T 2mi26-1, pT — mp2 4
2

from Cs. Let C3 be the quotient Cy /(Do @ E5). Note that the grading induced by the Seifert surface
is either a Z-grading or a (Z + 3)-grading. If

Dy = (Tameze s, 2 +9)
2

p—1 mp—q 1
N — > —
2 > 97y
then we can similarly apply Lemma to
D3 = (—B (F 2m+221c—1,i) and E3 = @ (I‘m+2k_1,i)
i<—%—g i<—p2;1+7mp;q —g
and then also
-1 -1 _
Dy = (F2m+22k—1 s —pT — g) and Fy = (]_-‘2m+22k—1 s —pT + mp2 ¢ _ g).

We conclude that

H(Cl) = H(Cone(ﬂ' : @ (F 2m+22k—1 s Z) e @ (Fm+2k—1a Z)))

lil<23t+g Ji| < Emmlptasl i,
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If ) 1

b= mp —(q

- < =,

2 3 953
then we can apply Lemma to
Dé = 6—) (F 2m+22k—17i) and Eé = @ (I‘m-&-Qk—lvi)'
i<Pl —mp+qtg i<Ppl _MmPod g
We conclude that
Bt gl

H(Cl) = @ (F2m+22k—1 ,i)

i=25t —mptq+g

O

If K is null-homologous, then (p,q) = (1,0). The inequality (m — 1)p — ¢ + 2 > 2g reduces to
m = 2g — 1. In such case, the result in Proposition [2.22]is indeed stronger than the large surgery
formula in [LY21cd, Theorem 1.22] because the assumption in that paper is m > 2g + 1. This
difference is essential when g is small (e.g. g = 1).

Proposition 2.23. Suppose K < Y is a null-homologous knot bounding a Seifert surface of genus
1. Then for any m € N, we have

dim I*(Y;,(K)) = dim I* (Y1 (K)) + (m — 1) - dim I*(Y).
Proof. Since g = 1, we apply Proposition part (2) to any m > 0. In particular, we have
0
H(A(0)) and Y,,, =~ 6—) H(A(s)).

s=—m+1

Y,

lle

By construction of A(s) in Definition we know

H(A(s)) = H(BY(s)) =Y
for any s < 0. Since dim I#(—Y’) = dim I*(Y") for any closed 3-manifold Y, we conclude the dimension
equality. O

Remark 2.24. When Y is a rational homology sphere, this corollary follows directly from the
adjunction inequality for the instanton cobordism map; see for example [BS19, Theorem 1.16].
However, for technical reasons such adjunction inequality relies on the assumption that the first
Betti number of the cobordism vanishes. So when b1 (Y") > 0, the existing adjunction inequality does
not apply.

2.5. Instanton tau invariant. We present some results from [GLW19)] for knots inside S3.

Definition 2.25 ([Lil9, Definition 5.4]). Suppose K — Y is a rationally null-homologous knot. Let
KHI™ (=Y, K) be the direct limit of

n n
w—,n+1 w*,ﬂ*’?
Lty B

N

Let U be the action on KHI (=Y, K) defined by {4} , . 1}nen,. It is well-defined due to the
commutativity from Lemma [2.6]

Definition 2.26 ([Lil9 Definition 5.7]). Suppose K < S? is a knot. We define
77(K) = max{i | 3z € KHI (—S%, K,i) s.t. U/ - # 0 for any j > 0}.

We have the following basic properties for 7;.
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Lemma 2.27. Suppose K < S2 is a knot. Then we have the following.

(1) (JGLW19, Proposition 3.17 and Corollary 5.3]) For n € Z large enough, we have
n—1

2
. . n—1
—min{i | 3 x € (Tp,i) s.t. F,(z) #0e (-8} + 5
(2) ([GLW19, Proposition 1.12 and Proposition 1.14]) We have 11(K) = —77(K) where K is
the mirror of K.

Lemma 2.28 ([GLW19, Section 5]). Suppose K < S* is a knot. Then we have the following.

(1) For any * € Q U {u}, we have (Ty,1) = (Ty, —17).

(2) For any n € Z, we have

dimT,, = dimT o, x) + [0 + 277 (K))|

m1(K) =max{i | 3z e (Dpn,i) s.t. Fr(z) #0e IF(=5%)} —

3. A RATIONAL SURGERY FORMULA

Suppose K is a null-homologous knot in a 3-manifold Y. In this section, we will study the
u/v-surgery on K. The integral surgery formula Theorem is an analog of the Morse (integral)
surgery formula for Heegaard Floer homology in [OS11] Section 6]. To generalize the formula to
rational surgeries, we use the same strategy as in [OS11l Section 7]. For simplicity, we use similar
notations as in Ozsvéath-Szabd’s work [OS11]. The symbols (p,q,r, a) in [OS11] are replaced by
(u,v,r,m) since we define p and ¢ in Section (indeed (p, q) = (1,0) because K is null-homologous).
Suppose

m= l;J

is the greatest integer smaller than or equal to u/v, and

U r

—=m+ —.

v v
Let O, be the knot obtained by viewing one component of the Hopf link as a knot inside the lens
space L(v,—r) thought of as —v/r surgery on the other component of the Hopf link, which is framed
by the Seifert framing of the unknot in $3. Note that O, /r is a core knot of the lens space, i.e.,
the complement is a solid torus. Since Y, (/) can be obtained by m-surgery on the connected sum

K#0,,, c Y#L(v,-1),
it suffices to understand the bent complex associated to K#0O,,,. in terms of the bent complex of K.

3.1. The connected sum with a core knot. Given two knots K; c Y; fori =1,2,let K’ c Y’
be the connected sum of K; and K,. Note that Y\N(K’) is obtained from gluing Y;\N(K;) by
an annulus along the meridians of K; for i = 1,2. Conversely, the disjoint union of Y;\N(K;) is
obtained from Y"\N(K"') by a product annulus decomposition in the sense of [KM10bl, Proposition
6.7]. The instanton version of that proposition implies

(3.1) KHI(Y', K') ~ KHI(V}, K1) ® KHI(Ya, K>).

Moreover, if K; are rationally null-homologous, in our previous work [LY2Ic, Proposition 5.15], we
generalized the above isomorphism to a graded version with respect to gradings associated to Seifert
surfaces. (Note the result in [LY21d, Proposition 5.15] states for knots inside rational homology
spheres but the proof works for rationally null-homologous knots inside arbitrary 3-manifolds.)
However, we need a stronger version of the connected sum formula which encodes the information
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in bent complexes. Inspired by the formula in Heegaard Floer theory [OS04, Lemma 7.1], we have
the following conjecture.

Conjecture 3.1. Suppose K; c Y; for i = 1,2 are rationally null-homologous knots. Then there
exist chain homotopy equivalences

B* (K 1#K>) ~ B*(K;) ® B*(K>),
where B*(K) is defined in Definition m

The proof of the above conjecture is an on-going project with Ghosh [GLY]. In this subsection,
we only prove the special case where K5 is a core knot in a lens space. First, we present some results
for core knots.

Lemma 3.2 ([Lil9 Proposition 4.10]). Suppose K is a core knot in a lens space Y, then we have

lrp —sq| — 1

r ) = C | <
( r/svl) fOT any |’L| 9

For other grading i, we have (T',/,,1) = 0.

Corollary 3.3. Suppose K is a core knot in a lens space Y. Then the bypass exact triangles in
Lemma [27) are always split, and there are two canonical isomorphisms induced by bypass maps
between the direct sum of two spaces with smaller dimensions and the third space.

Proof. From Lemma we know dimensions of T',,T',41,T, are [np — ¢|,|(n + 1)p — ql, |p|,
respectively. Since the sum of two smaller integers equals to the third integer, we know the triangles
always split. Since each nontrivial grading summands I',,, I',,11, T, are 1-dimensional, the restrictions
of the bypass maps induce the canonical isomorphisms. ([

From Lemma [3.2] for a core knot K < Y, we have
dimKHI(-Y, K) = dim I¥(—Y) and d+ = 0.
Then Conjecture reduces to the following proposition.

Proposition 3.4. Suppose K1 < Y7 is a rationally null-homologous knot and Ko < Ys is a core
knot in a lens space. Then there ezist identifications

BF (K1#K3) = B* (K1) @ KHI(—Ya, K>).

Convention. To distinguish sutures for different knot complements, we write I'; /7 wz::l 41, and

F? with e € {1, 2, #} for the sutured instanton homology, bypass maps, and the cobordism maps in
Lemma associated to the knots Ky, Ko and K #K>.

To prove Theorem we need the following lemma, which generalizes results in [GLW19, Section
3.2].

Lemma 3.5. Suppose K; c Y; fori= 1,2 is a rationally null-homologous knot. Suppose n and k
are large integers. Then there exist maps

n,k k
Cl L TLeT: > TF , and CLF T, @TF > TF

so that we have the following commutative diagrams.
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Y, ®ld ¥}, 0ld
(3.2) I, T} Il I3 - | Il
cLL Chimsn S
’pi’,ﬁ% # Pt
Fﬁ: Fn+k I‘ﬁ:
1 2 wi:h#—l@Id 1 2 F7t+1®Fk2' ﬁ u
(3.3) r,ery | POl (Y1) @ IF(=Y2)
Cz:]:n+n ;tjﬁe+1 =
wn+k,# F#
# +,n+k+1 # n4+k+1
Fn+k Fn+k+1 Iu(_Y#>
Id®wk’2
(3.4) I, ®TI? —TEe I, ®I?
Ty

where the the identification in comes from the connected sum formula for I* (c.f. [Lil8ad,
Section 1.8]) and the identification in comes from the sutured decomposition along the product
annulus.

Proof. The proof is similar to the arguments in [GLW19] Section 4], especially the proof of [GLW19,
Lemma 4.3] and the proof of [GLW19, Proposition 1.14]. Although the proofs in [GLW19] was only
carried out for knots inside S3, the same argument essentially works for rationally null-homologous
knots in general 3-manifolds. Here we only sketch the proofs as follows. We only prove for the case
involving positive bypasses. The case for the negative bypasses is similar.

We attach a 1-handle h' to (Y1\N(K1),T'L) u (Y2\IN(K32),T3) so that the two attaching points of
the one handles are on the curve (np; — A1) < I'L and (kpa — A2) < I'Z respectively. (For negative
bypasses, we attach the 1-handle to (A —npu1) and (A2 —kps) accordingly. Note that the orientations
of curves are different.) See Figure 4l Then we can attach a 2-handle h? along the curve a which
goes through the 1-handle h' and intersects the suture obtained from attaching the 1-handle twice,
as shown in Figure [d] Define

k
Ok = Oz 0 Cpa.

Here Cj2 and Cj1 are the contact handle attaching maps as introduced by Baldwin-Sivek in [BS16a].
Pick the bypass arc 3 so that it intersects the curve (Ay — kpuz) < I'} once and its two end points
are on the curve (nu; — A1) < I'L. See Figure 4l We know this is a positive bypass (c.f. [Lil9]).
Attaching a bypass along 3 yields (Y1\N(K1),T,,).

Let hY and h? be the corresponding 1-handle and 2-handle attached to (Y1\N(K1),T,) u
(Y2\N(K3),T'?). Define

k
Oi’,# = Ch2/ (e] Chll,
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npy — A\ ko — Ao

FIGURE 4. The 1-handle k', the attaching curve a for the 2-handle h2, and the
bypass arc .

The commutative diagrams and are straightforward since the bypass arc and the contact
handles are disjoint from each other. See also [GLW19, Diagram (4.4)] and proof of [GLW19,
Proposition 1.14] for more detailed discussions. The proof of is similar to that of [GLW19|
Equation (4.6)]: let o/ be the attaching curve of the 2-handle h?. We can isotope o/ into a suitable
position so that this contact 2-handle attachment correspond to the one in the construction of the
bypass map as in [BS16a].

a

Proof of Proposition[3.f} We only show the proof for d. The proof for d_ is similar. To construct
the differential d, we need to use triangles about positive bypass maps in (2.1]). Suppose m and n
are large integers. Consider the following diagram.

(3.5)
n,1 n—1,1
— T e P ®Id I oT YL, eld I T - ...
Pl eld Y, ®1d
wi% / M% /
SIS r,er; o, Loy o b,
# witﬁ 7:+1 # wif J:kl'# #
I | R e <~—""
wi’tJrk wi:ﬁ#»kfl
wi%\ / ’/fifuk’# /
ry LA

where the vertical maps from I', ® T} to I'# is C’i’; in Lemma
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By (3.2) and (3.3) in Lemma [3.5] the squares in (3.5 involving vertical maps commute. Hence
the vertical maps induce a morphism C, between unrolled exact couples. This induces a filtered

chain map between BT (K1) ® '3 to BT (K 1#K>).

Since k is large, from Corollary there is a canonical embedding of KHI(—Y3, K») = I‘i into
I'? via the inverse of wii By precomposing this embedding, we obtain a filtered chain map between
B (K1) ® T2 to BT (K #K3). Then by , we know this filtered chain map is an identification
on the first page. This implies that it induces an identification on each page and then the total
filtered chain complex. O

3.2. The formula for null-homologous knots. In this subsection, we combine Proposition
and the integral surgery formula to obtain rational surgery formulae for null-homologous knots.
First, we do similar calculations as in [OS11} Lemma 7.2].

Lemma 3.6. Suppose K1 < Yi is a null-homologous knot and Ky = O, < Yy = L(v,—r). Let
(Yg, Ky) be the connected sum of K1 and Ko and suppose Ky is framed by the longitude of Ko.
Suppose ([ie, Ne) is the meridian and the longitude of K, for e € {1,2,#}. Then

Hi (Y3 \N(Ky)) = Hi(Y1\N (K1)
Moreover, the order of Ku is v and the intersection number 0S4 - Ay is —r, where Sy is the Seifert
surface of K.
Proof. The knot K is order 1 and O,, is order v. Then
H,(Y1\N (K1) = Hi(Y1) @ Z{u1) and Hy(Y2\N(K»)) = Z.

We write g = p1 and go as the generator Hq(Y2\N(K32)). Then pus = v- gy and Ay =7 - go. A
calculation on the homology shows

H (Y \N (K y)) = (H1<Y1\N<K1>> @H1<Y2\N<Kz>>)/<uhu2>

(36) = (M) @ Zon,009) o = v-2)

=~ Hi(Y1) @ Z{gx)
= Hi(Y1\N(K1)),
where we write g4 as the generator. We also write pr as the projection to the summand generated
by g4#. Then
pr(ps) =v-gg and pr(Ag) =r- gx.
Thus, the knot Ky is order v and 0S4 - Ay = —r. O

Corollary 3.7. Let K, c Y, for e € {1,2,#} be defined in Lemma . Suppose Ci’f:mrk and C’ii
are defined in Lemma 3.5 Then we have explicit formulae of the grading shifts of the maps as
follows.

n,k . n—
1) ot (i

(k—Dv+r (n+k—1Nv+r

1
)® (T, ) + 5

).

)) c(TF v+

. . ) k—Lv+r . )
(338) ceh (b s B0 ) < (0 i+ )
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Proof. First, we compute the grading shift of C*” u From the homology calculation in Lemma
and the graded version of (3.1)) in [LY21c, Proposition 5.15], we have

(3.9) T#.s) = P (T),5)Q (T2, ),

S1V+8S2=s8

where we take the direct sum over sqv + s = s because g = v-g; = g2 under the third isomorphism

in l) From Lemma we know the grading shift of the map z/;i*’z is ¢M Then from

1) we know the grading shift of Ci‘k is described in

Also from Lemma and Lemma , we know the gradmg shifts of wilu and 1/1"+k # are $"T_1
and $W, respectively. From 1} and , the expected grading shifts of Cz:]:nJrk is
described in . Though in general Q/JTL # are not injective, we can still obtain from the
topological construction of C"” + m+k in the proof of Lemma The proof is sumlar to the proof

of [GLWI9, Lemma 4.3] and the only difference is that now the knot K, has order v so that a
(rational) Seifert surface of the connected sum knot K;# Ks is obtained from one Seifert surface of

K5 and p copies of Seifert surfaces of K; by v many band sums. See Figure [f] O
651 651 aSQ aS2
hl
1o et A ettt s peegpeme e

FIGURE 5. The band sum for the case v = 2. The two (green) shaded regions are
the two bands.

Then we provide an identification of bent complexes.

Proposition 3.8. Let K, c Y, for e € {1,2,#} be defined in Lemma . Then for any grading s,
there is an identification

A(K#7 S) = A(Klv Sl)v

where s’ is the unique grading satisfying

v—1

|s — s'v| < 5
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Moreover, we have the following commutative diagrams

m* (K#»S)

A(Ky, s) ———= B*(Ky.,s)

ﬂ'i(Kl,Sl) +
A(Ky,s') —————— B*(K3,5)
Proof. From Lemma we know (I‘i, s2) is nontrivial only for |s;| < “5%, for which the grading
summand is 1-dimensional. Due to the homology result in Lemma [3.6] we can apply the graded

version of (3.1)) in (3.9)) to show that
(I‘f,s) = P (I‘}L,sl) ® (Fi,SQ) ~ (F}“s').

S$1V+s2=s

Moreover, we have

PE@F, s +kv) = PT},s +k).

k=0 k=0
Note that two sides of the isomorphism are underlying spaces of subcomplexes of B*(K4) and
B*(K3) since the orders of Ky and K; are v and 1, respectively. From Proposition the
differentials d on both sides are the same under the isomorphism. Similarly, we have

@(I‘f,s + kv) = @(I‘}L,s’ + k),

k<0 k<0
and the differentials d_ on both sides are the same. Hence we conclude the identification about the
bent complex (c.f. Definition [2.15)). The commutative diagrams follow immediately. ]

Theorem 3.9. Suppose K 'Y is a null-homologous knot. Suppose u/v € Q\{0}. For any grading
s, let s’ and s” be the unique gradings satisfying
—1

and |s +u — s"v| < UT

|sfs’v|<v_

Then there exists a grading preserving isomorphism

=0 DHB () = D HB (")

SEZ SEZL

so that

F(=Y_y(K)) = H(Cone(w +Zuport D HARS)) — D H(B(s’)))).

SEL SEL

Proof. The statement is an analog of the rational surgery formula for HF in [OS11l, Section 7.1],
where 7~ and Z,/, o 7" are analogs of o and h. Let m = |u/v] and u/v = m + r/v. Following the
strategy at the start of this section, set K1 = K and K3 = O, to be a core knot in a lens space.
Then Y, /,(K) is obtained by m-surgery on K4 = Ki#K5. From Theorem we know there
exists a grading preserving isomorphism

Eh D H(B (Ky,s)) > @H(B™ (Kg,s +mp—q))

SEZL SEL
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so that
F(=Y_y(K)) = H(Cone(ﬂ_’# +E ot # L (P H(A(Ky,s)) —» @ H(B™ (Kyg, s)))).
SEZ SEZ

Note that (p,q) = (v, —r) so mp — ¢ = u.
From Proposition we replace complexes of K4 by complexes of K to obtained the rational
surgery formula, where Z,, is induced by =7 under the identification. O

Remark 3.10. The rational surgery formula for a rationally null-homologous knot is more complicated
but still doable. In such case, the graded version of Kiinneth formula is not enough and we need
a torsion spin®-like decomposition for sutured instanton homology (c.f. [LY21al], Remark and

Remark .

4. THE 0-SURGERY FOR KNOTS IN THE 3-SPHERE

In this section, we deal with O-surgery for knots inside S®. Recall we have

+ +k 2m+2k—1
— m 2 .
Tk = Vi mior—1 0¥ g Demazems = Doppop,
m+k 2m+2k—1
- — v 2 .
Mg = U maok—1 O Vamyn D2mizems = Do,

and Wizk be the restriction of Wﬁ . On (T 2me2x6-1, ). For knots inside S3, we have a better description
) . ’ 2
of the maps 77:721,9 than in Lemma M

Lemma 4.1. Suppose K = S* is a knot. Let 7 = 77(K) be defined in Definition . For any
fixed integer m and large enough integer k, we have the following.

(1) Wheni> T, W;llk =0. When i < —7, W;Zk = 0.

(2) Wheni <7, 7} #0. Wheni>—7, m_ % #0.

(8) Wheni < —g(K), 71':;1,€ is an isomorphism. When i = g(K), 7T;sz is an ismorphism.

Proof. For part (1), we only prove the statement regarding 77:72) - The statement regarding 7, .
follows from the symmetry between K and —K, where —K is the orientation reversal of K. Note
when we switch the orientation of the knot, the tau invariant remains the same, 7% switches with
each other, and the grading induced by the Seifert surface becomes the additive inverse. Let

32

2m42k—1 . 2m+42k—1
) _ P) | .
—,m+k w*,m+k (T 2mt2k—1,9)"
3

We know that

+i_gm2k—1 Od]%,i
7Tm,k - T4+ m+k —,m+k
From Lemma 2.8 we know
2m42k—1 m+k—1

Im(y_, 2 ) (Dongnri+ 5 ).

When £ is large enough so that m + k is large, the map lI'T’fnkail corresponds to the composition

of (k — 1) many U-actions as in the construction of KHI™ in Definition By the definition of 7
in Definition we immediately conclude that

m+k _
\I]+,m+2k—1 |(Fm+k7j) =0
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whenever j > 7 + %’H Hence as a result we have
W;Zk =0
when @ > 7.
For part (2), again we only prove the statement involving 77:2 - By the definition of 7, and the

m+k

correspondence between W o 2k—

there exists

; and Uk=1 on KHI™, we know that when k is large enough,

m+k—17+i-1
2

)

S (]-‘erkf'rJria T+

so that

WL (@) # 0.

Take

Yy = \I/T;nk_:,;ﬁ_i (:L’) S (Fm+k; i),

we know that
\I/erk (y) _ \I/erkaJri (Jj) £0.

+,m+2k +,m+2k—1
2 2k—1 .
So it remains to show that y € Im(¢p_ 2 . ™). Indeed, from the construction of y we know that

v (y) = 0.
Then from Lemma [2.9] we know that
Wk 1 () = ¥ g 0T () = 0.

Hence by Lemma |2.8] we have

2m+2k—1 .

y € ker( T,jnk-&-k—l) = Im(u)—,mik ).
Part (3) is a restatement of Lemma part (3). O

Next we study the O-surgery for knots inside S®. The main obstruction to apply the proof of the
integral surgery formula in [LY22bl Section 3.2] to the O-surgery is that W:l’k and 7, , have the
same grading shift. Then

H(Cone(ermy) . + cam, )
may depend on the scalars. If either map vanishes, then the homology is still independent of the

scalars. However, this is not true in general. Fortunately, we can make use of the Z-grading on
I*(S3(K)) in (1.1). Note that one of the restrictions of 7 . on a single grading vanishes.

Theorem 4.2 (0-surgery formula). Suppose K < S is a knot with 77 (K) < 0. Suppose A(s), B*(s)
and 7 (s) : A(s) — B*(s) are complezes and maps constructed in Definition[2.18, For any s € Z\{0},
there exists an isomorphism

o, t H(B(s)) > H(B(s))
so that I*(—S3(K), s) is isomorphic to

H<Cone(ﬂ'(s) +Zgsomt(s): H(A(s)) — H(B(s)))>

If 71 (K) # 0, then the same result also applies to s = 0.
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Proof. From Lemma [2.10] we have a long exact sequence
=T, A, r, - Iﬂ(—Sg(K)) I, -
By the same reason in Lemma [2.13] we have
(4.1) Ay = ey + e .
Following the construction of the gradings induced by Seifert surfaces, the maps in the long exact

sequence are all grading preserving. We consider the following octahedral diagram that is used in
ILY22Dbl Section 3.2].

(4.2) Y,
e ;
1 +,m—1
(e jz
+m=1+k’ F2m+2k 1 _Hr/)—,m—l
\Ijm— -2z
n —,m— 1+k s
+,m—1 W o
+ot L
’ m 1+k @Fm 1+k I‘mfl
i 1+k E lT
U 1k U ok A
]-‘y, wﬂ ) _ym— 14k I‘m71+2k
+,m—1+k +,m—1+2k
where
m+k—1 m+k—1
77/} 2m+2k 1 7/1 2m+2k 1

When m = 0, all maps are homogeneous, so we could con51der the diagram grading-wise. Note that
we may not know ¢; = ¢ = 1 in (4.1]), but we can add scalars to other maps to make diagram still
commute. Following the same strategy in [LY22bl Section 3.2], we obtain for any s € Z,
IF(—S3(K), s) = H(Cone(c‘o,ﬂ'a:}: + C47r0_’;f))
for some scalars c3, c4.
When 77(K) <0, from Lemma we know for any ¢ € Z, either 770 " " or ok " vanishes, and hence

H (Cone(camy kZ +eymy kl)) is independent of the scalars. Then we have

I'(—S3(K),s) = H(Cone(csmg s + camg )
~ H(Cone(mg}. + my 1))
>~ H(Cone(r ™ (s) + Zgs o7 (5))),
where = s is constructed similarly to =, for m # 0. O

Remark 4.3. From Lemma part (2), we may pass to the mirror knot to satisfy the assumption
71 < 0 in Theorem [£.2}

Baldwin-Sivek also studied framed instanton homology with twisted bundle for 0-surgery, which
is denoted by I*(S3(K), i), where p is the meridian of the knot. There is also a Z-grading on this
homology induced by the Seifert surface and we also have a long exact sequence

ey
_

i V¥ F—lﬁlu(*sg(K)vﬂ)Hruﬁ”'
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so that all maps are grading preserving (the coefficients ¢} and ¢}, may be different from ¢; and cg).
Thus, we can use the similar octahedral diagram grading-wise to prove the result in Theorem
when replacing I*(—S3(K)) by I*(—S5(K), ). As a result, we obtain the following corollary. We
also write I#(—S3(K), u,4) for the grading summand of I*(—S3(K), u).

Corollary 4.4. Suppose K = S3 is a knot. For any s € Z\{0}, we have
IH(=S3(K), s) = I*(=S3(K), 1, 9)-
5. SURGERIES ON BORROMEAN KNOTS
In this section, we study surgeries on the connected sums of Borromean knots.

5.1. The Borromean knot. First, we compute KHI of the Borromean knot. Let 72 = S} x S x S1.
Let Y be the result of a O-surgery along St = T° with respect to the surface framing induced by
T? = S} x S}. Note Y = #2(S! x S2). Let K be the core knot of the O-surgery, which is another
description of the Borromean knot according to [OS04] Section 9]. The knot K bounds a genus-one
Seifert surface S = S3 x SA\N(S}). Let u < d(Y\N(K)) be the meridian and A = S < d(Y\N(K))
be the longitude.

Lemma 5.1. We have the following
C |il=1
KHI(Y,K,i)=<{C%2 i=0

0 otherwise

Proof. We first figure out KHI(Y, K) = SHI(Y\N(K),I',,). Using an annulus to form an auxiliary
surface, we know from [KMI0b, Lemma 5.2] that a closure of (Y\N(K),T',,) can be described as
S1 x ¥y where ¥, is a closed surface of genus 2, obtained by gluing two once-punctured torus
together. From the proof of [KM10bl Lemma 5.2], there are a pair of simple closed curve a, 8 < ¥y
so that a - 8 = 1, the torus S! x « is the distinguishing surface of the closure, and /3 serves as the
wy that specifies the bundle over S' x 3,. By construction,

SHI(Y\N(K),T,) = Eig(I”(S" x %2), u(pt), 2),

where Eig(I°(S! x ¥3), u(pt), 2) means the generalized eigenspace of u(pt) on I7(S x o) with
eigenvalue 2.

On the other hand, take T? = J(Y\N(K)) and take the Seifert framing of K on T?. Let
M =1[0,1] x T? and let T',, ,, be the suture on dM which consists of two meridians on each boundary
components of M. We can use an annulus to close up each boundary component of (M,T", )
separately. A construction similar to that of [KMI0b, Lemma 5.2] implies that a closure of (M, T, ,,)
can be described as S' x 35, and there are two pairs of curves a, 8,a/, 3’ on ¥y so that o - 5 = 1,
o' - B =1, the surface S* x (o U ) is the distinguishing surface of the closure, and 3 U 3’ serves
as the we. Furthermore, the two pairs (o, 3) and (o/, ') come from closing up two boundary
components of M, so they are disjoint from each other. We know the following

SHI(M, T, ) = Eig(I727 (S x %), p(pt), 2).

Since 8 and B U ' both represent primitive homology classes on Yo, there is an orientation preserving
diffeomorphism h : Yo — X5 so that H([S]) = [B] + [8']. As a result, the map h extends to a
diffeomorphism between closures and we conclude

SHI(Y\N(K).T,,) = SHI(M. T, ).
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Observe that there is a sutured manifold decomposition

(M, ) S (V,1%),

where A = [0,1] x u = M is a product annulus and V = S* x D? is a solid torus with 7% consists of
six longitudes of V. From [Lil9, Proposition 1.4] and [KM10bl Proposition 6.7] we know that

SHI(Y\N(K),T,) = SHI(M,T,, ) ~ C*.

Now we compute the dimension of each graded part. Since g(K) = 1, we know KHI(Y, K,7) =0
for |i| > 1. For |i| = 1, since K < Y is fibered (the complement is S* x (T?\D?)), we have

KHI(Y, K,1) = KHI(Y, K, —-1) = C.
As a result, we conclude that KHI(Y, K,0) =~ C2. O

On connected sums of S x S2, the circles S' x {pt} induces a nontrivial action on the framed
instanton homology. In particular, we have the following lemma.

Lemma 5.2 ([Scal5l Section 7.8]). Suppose YV is the connected sum of copies of S x S%. There is
a canonical action of A*Hl(Y) on Iﬂ( ), making Iﬂ(Y) a rank-one free module over A*H1(Y).

Since Y = #25! x §2, Lemma [5.2] implies
INY) = A*H,(Y;C) = Clxy, xo]/(x120 + zowy, 22, 22) = C, 21, T, 2122

Note on Y we can pick two circles whose p-actions correspond to the multiplication of z; and
zoon'Y = A*H;(=Y;C). We can pick these two circles away from the Borromean knot K. Since
the p-action of a circle commutes with all cobordism maps, all p-actions of surfaces and points,
we know that there is an action of A*H;(—Y;C) on (T'y,4) for any * € Q U {} and any grading
. This makes (T'y,4) a A*H1(—Y;C)-module and all bypass maps and surgery maps are module
morphisms. We have the following structure lemma.

Lemma 5.3. Suppose K 'Y is the Borromean knot. Then for any integer n > 2, we have an
identification

Clarw2) i = 23t

) Clwy, 2, w20y |i| = 252

Fn = ﬂ(_Y\N(K)a _Fn7 Z) = A* . nzl
Hl (Y7 C) | | 2

0 otherwise

Proof. The structure of T, for large n is understood by Lemma [2.19]so it suffices to work out the
structures of I's and I's. By Lemma and Lemma there are exact triangles

I‘Q% I‘2%

N \/

From Lemma part (4), we know that Fj is surjective so
dimI'3 = dimIs + dimY = dim Ty + 4.
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Since dimI',, = 4, we know that the last two exact triangle split as well and in particular, the maps
wi,g, are both injective. From Lemma m part (4), we know that
(5.1) (I'3,0) =Y = A*H,(-Y;C).
Hence from Lemma Lemma part (2), and Lemma [2.4] we know that
dim(T'3, 1) = dim(Ts, i%) = dim(T'3,0) — dim(T",, F1) = 3.
Similarly,
dim(T3, +2) = dim(Ts, ig) = dim(T'3, +1) — dim(T",,,0) = 1.

Since the isomorphism in (5.1)) is induced by a cobordism map, it is an isomorphism between
modules. We have an injective module morphism

¥24(T3,5) = (Ts,0).

We have the following claim.
Claim. There is a unique 3-dimensional submodule inside A*H;(-Y;C).

Proof of Claim. Indeed, suppose M < A*H;(—Y;C) is a 3-dimensional submodule. Assume that
1+ a € M, where a is spanned by x71, 22, and x125. Then note z12s = z122(1 + a) € M. Also
21(1 + a) is of the form 1 + ¢ - x124 for some ¢ € C so we know x1 € M and similarly x5 € M. As
a result 1 € M so M must be all of A*H;(—Y;C). Hence we conclude that M does not have an
element of the form 1+ a so the only possibility is that M = C{z1, za, 122). O

From the claim we know that
1
(I‘g, 1) = (FQ, 5) = (C<£L’1,IC2, $1$2>.

From the injectivity of the map 3 5 : (s, 3) — (I's,1) we can conclude similarly that

(F3,2) = (FQ, g) = (C<5171£E2>.
]

Corollary 5.4. Under the description of Lemma[5.3, the bypass maps between Ty, and T'y 41 for
n = 2 are described as follows.

o Ifi >0, the map
. 1
wril,n-i—l : (Fn’ il) - (FTH-le + 5)
is the inclusion or the identity if the domain and range are the same.
o Ifi <0, the map

. 1
U3 ir (T £8) = (Cogn i F 5)
1s the identity.
Moreover, the module structure on T, is trivial, i.e., the module multiplication of x1 and z2 are
both zeros.
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Proof. Note all the bypass maps are module morphisms. The description of the bypass maps is
straightforward from the proof of Lemma For the module structure of I',, we know that
(Ty,1) = (', —1) = C so the structure must be zero. Also from Lemma [2.4| we know

(T, 0) = H(Cone((C(a:lxg} — Clay, 72, x1x2>)>

so the module structure on (T';,,0) is also trivial. O

Using the integral surgery formula Theorem and the dual knot formula in [LY22b] Section
3.4], we can compute I*(—Y_,(K)) and T, for any n € Z (n # 0 for I*). Since we will also deal
with the connected sum of the Borromean knots, we omit the calculation here.

5.2. The connected sums. In this subsection, we compute the surgeries of g copies of connected
sums of K < Y. According to [OS08l Section 5.2], these surgeries give rise to nontrivial circle
bundles over ;. Write

K9 =#IK c Y9 = #9Y = #2981 x §2.
Note that the genus of K9 is exactly g. For the rest of this subsection, for = € Z U {u}, write 'y the
suture on YI\N (KY) and write Iy the corresponding sutured instanton homology. The connected
sum formula for instanton knot homology gives rise to the following.

Corollary 5.5. We have the following

dim KHI(Y?, K9, 7) = dim(T,, ) = (ng l>
Moreover, the module structure of I',, is trivial.
Note from Lemma 5.2 we know that
F(=Y9) = A*H (Y9 C) = Clay, ..., xa0)/(zizj + 275).
For any k € [0,2g] N Z write
(5.2) Mog e = Span{Ili_jz;, [ 1>k, 1<iy <.+ <i; <2g}.
Note that
Mag o = A*Hi(—Y7;C) and My, o, = C.
It is straightforward to check that
29
dim M, . = ; <2kf}>.

Definition 5.6. Suppose M is a module over A*H;(—Y9;C). We say M is of degree k > 0 if
any monomial of degree at least k + 1 annihilates M and there exists a monomial of degree k acts
nontrivially on M. We say M is of degree 0 if the module structure is trivial.

Lemma 5.7. Suppose A, B, and C are three modules over A*Hy(—Y9;C) so that there is an exact

triangle
C
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where the three maps f, g, and h are all module morphisms. Suppose further that A is of degree k
and C is of degree 0, then the degree of B is at most k + 1.

Proof. Suppose, on the contrary, that B is of degree k + 2. Assume, without loss of generality, that

there exists b € B so that
k+2

j=1
Suppose that g(zgi2-b) # 0. Then zpio - g(b) = g(xks2 - b) # 0 and this contradicts to the
assumption that C is of degree 0. As a result, there exists a € A so that f(a) = xj42 - b. Then we

have

j=1 j=1
As a result, we have
k+1
( n l’j) -a # 0,
j=1
which contradicts the assumption that A has degree at most k. O

Lemma 5.8. For any g > 1, and n = 2g, and any grading i, we have the following.
/\/(2g7|i|+g—"%1 i =
(Tn,i) = § A*H (-Y9;C) i| <25t —g
0 otherw1se
Proof. Again we only deal with I'yy and I'sg41. We prove this lemma by three claims. Note from
Lemma part (4), we have
(T2g41,0) = I*(—=Y9) =~ A*H,(-Y¥; C).
Also from Lemmampart (2) we know that (T, 1) = (T'og41,i + 3) for i > 0.

Claim 1. For ¢ > 0, the degree of (I'yg, £1) is at most M — 1.

Proof of Claim 1. We only deal with (I'yg,¢). The argument for (I'yq, —¢) is similar. First from
Lemma m part (2) we know that (T'ay,4) = (T'2g41,% + 3) then we know from Lemma that
there exists an exact triangle

(T2, 1) (Pag41,1— 5) = (Fag,i — 1)
- 2q+1
M?
Hence we can apply Lemma [5.7] E to carry out an induction from the top gradmg of T'y, and
the fact that I';, has degree 0. The starting point is the top gradmg 29=1 for which we have
(Tag, 492 1) ~ (1",“ g) = C. So clearly it has degree 0. O

Claim 2. For ¢ > 0, we have the following.

dim(T

56

J
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Proof of Claim 2. From Lemma part (4) we know that Fygiq is surjective. As a result, we have
dim Ty, — dim Ty, = dim Y9 = 229 = dimT,,.
Hence the exact triangles

V2041
+.29
Fn > Fn+1

N

both split, which means the map 1/}2;2g+1 is injective when restricting to the grading +i for i > 0.
As a result, we can obtain the claim by an induction and applying Corollary and the fact
4g

1 2
dim(Tyy, + =) = dim(T,, +9) = 1 = (09)

|
Claim 3. The module Mo, j is the only submodule of A*H;(—Y?;C) that has degree at most

2g — k and has dimension
L)

j=k
The proof of claim is straightforward. Note there is a sequence of injective maps

. 1 .
(P2, 1) = (Pags1,1 — 5) = (Tog,i— 1)+ > (Tog41,0) = A*H, (-Y?; C)

Hence the lemma follows from the above three claims. ]
From the proof of the above lemma, we also know the following

Corollary 5.9. For any g =1, n = 2g, and grading i, we have the following.

e Ifi >0, the map
} 1
¢i7n+1 : (Fn7 il) d (1_‘n+17Z + 5)
is the inclusion or the identity if the domain and range are the same.
e Ifi <0, the map
n 1

+,n+1 : (Fn7 il) - (FnJrlai + 5)

1s the identity.

Again, based on Lemma [5.8 and Corollary and using the integral surgery formula and the
dual knot formula in [LY22h| Section 3.4], we are able to compute T',, and I*(—Y_,,(K)) for any
neZ (n+#0 for I*). Here we only present the computation for I*(—Y_,, (K)).

Proof of Theorem[I.1l The manifold ;¢ is obtained from Y9 = #2951 x S? by m-surgery on the
connected sum of the Borromean knot K9. Note as the Borromean knot K < #25' x S2, we also
know Y2 (K9) is diffeomorphic to Y7, (K9). So if suffices to compute Y9, (K9) for m > 0.

Since dimI';, = dim Y¥Y, we know that all the differentials on the bent complexes are trivial. If
m > 2g — 1, then the argument follows directly from the large surgery formula in Proposition [2:22]
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For smaller m, we can also use the truncation of the integral surgery formula in Proposition [2.22
to make the computation easier. Suppose k is large enough. From Lemma Lemma [2.8) and
Lemma we know that the following two exact triangles both split.

| F2m+22k—1
\ %{—2]«—1
wi,nlfk
Fm+k

2m+2k—1
This implies that ¢, 2, are both surjective. Since

+ + 2m+2k—1
T _ m 2
Tk = Y oiok—1© d’;m% )
we have

(5.3) Imr  =Im®PrHE .

Note when |j| < m + g we know that
(I‘Z'm+22k71 ,]) ~C

229

~ (Trt2k-1,7)-

The truncation of the integral surgery formula implies the following.

g-1 -1-
(5.4) F(=Y_p(K)) = H(Cone(wTka b Y, (Pameze, ) - Z (rm+2k_17j)))
Jj=1-g =5+1-
where the map
g—1
m,k Z m Z ﬂ-;L’,Zk:
i=1—g 1=1—g+m

Now we compute the image of the map 7. We discuss in two different cases.
Claim 1. If m =2 — 1 where 1 <1 < g — 1, we have

Imﬁﬁ,k:@( 293®M2g])

where M;—FM» = My, ; as defined in 1) and

1
M3, < (Trsor—1,£(g *l+§*J))

29,3
Proof of Claim 1. For any 5 +1—-g <j<g—1-"75, we have
. +,7— 5 -, j4+
Im Wﬁ,k N (Tptok—1,7) = Im 7rm7jk 7 u Im wmi 2

When +j < 0, we have

+.i—%
m,k

+.J+%
m,k

. k-1
(5.3) = ‘1’++n’§+2k 1 ((Fn+ka] + 2))
= M_jjl4g-2-

Im~ cImm
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As a result, we conclude that

g—1
Iy, © M3, ; @ Ms, ),
j=1

To show that this inclusion is the equality, assume that

g—1
+ —
be .C_Bl(MQQJ ® M297j>'
j=
Without loss of generality, we can assume that b € M;+%_j
will prove that b € Im 773;7 .- By the argument above, there exists

. m
Ajqm € (I‘Qm,+22k,—1 , ]+ 7)

2
so that
=ity -
Tk (@jrg) =b.
Note f
+it3 it
Im T~ C Im T e ,
so we can pick
. 3m
aji3m € (I‘21n+22k71 )+ 7)
so that .
—j+3p gt
m.k (%4%) = Tk (@)

We can repeat this argument inductively to obtain an element
a=ajim +aj+37m +CL]-+% + ...

so that

From Claim 1 and (5.4), we can compute the dimension of I*(—=Y_,,(K)) as:

g-1 g-1—%
dim (=Y (K)) = D) dim(Tamszens, j) + Y] dim(Tgor1,4))
Jj=1-g j=%+1-g
-2 dimlmﬂf%k.
g—lj—1
29
=229 . . )
mta-y Y ()
j=114=0
Claim 2. When m = 2] for 1 <1 < g — 1, we have
g—1—1
Imﬂ'?rl,k = Mag g1 @ @ (M;g,j ®M;g,j)7
j=1

where M%QJ- = My ; as defined in 1D

1 .
M35 Tz, £(9 — 1+ 3 =), and Mag g1 = (Tims2r-1,0).

35

c (Tyut2k—1,7) for some j = 0. We
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The proof of Claim 2 is similar to that of Claim 1. As a result we can compute

dim IH(=Y_ (K)) = 2% -m + 4+ Q_Zl_lji (2{0) e -"‘fl <22;‘7>.

j=1 =0 1=0

O

5.3. Seifert fibered manifolds. In this subsection, we use the generalized rational surgery in
[OST1) Section 10.2] to obtain the Seifert fibered manifolds by surgeries and then compute the
framed instanton homology.

Following the notations in Section |3| and Section we denote the connected sum of g copies
of the Boromean knot by K9 < Y9 = #295! x S, and denote the core knot in L(v, —r) by Oy/r-
Let Ky < Yy be the connected sum of Ko := K9 and Ky := Oy, /p,,-.., Ky := O, /r, . Then from
[OS11l, Section 10.2], the m-surgery on K gives the Seifert fibered space over a genus g base orbifold
with Seifert invariants (m,r1/vi, ..., 7 /0n).

Similar to the calculation in Lemma we have

HAV\N () = (V) @ a1 1900 ) oo = 0 Tor i = 1)
where g is the meridian of K9, g; is the generator of
Hi(L(vi, =i \N(Oy, sr,)) = Z,

and the meridian of O,, /., is v; - g;. Suppose

(5.5) ged(vg,vj) =1 fori #je{l,...,n}.
Let
v:Hvi andv;:—:nm
=1 J i#]
Suppose g; = v} - g; for i =1,...,n and go = v - g{,. Then we have
e YWD (07 @2 dh 0 )0y =i or i =)
= (YY) @ Z{gp)-
For e € {0,...,n,#}, let T5, T3, %5 1,05, ¢4, and Fp denote the sutured instanton ho-

mologies, the bypass maps, the cobordism maps in Lemma [2.10] for K,. Similar to Proposition [3.8]
we have the following identifications of bent complexes.

Proposition 5.10. Suppose . For any grading s, there is an identification
A(Ky,s) = A(Ky,so) and B¥(Ky,s) = B¥ (Ko, so),
where sq is the unique grading satisfying

(5.7) s:sov—l—Zsivg and \si|<Lfori:17...,n.
i=1 2
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Moreover, we have the following commutative diagrams

(K ,S
A(Ky,s) ——5#9 g, s)

T (K s
A(K07SO) ﬁBi(Kb?SO)

Proof. From Lemma since K; for i = 1,...,n are core knots in lens spaces, we know (T, s;) is

IJ,’
nontrivial only for |s;| < 252, for which the grading summand is 1-dimensional. We can apply the

graded version of (3.1]) in [LY21c, Proposition 5.15] to show that

(5.8) (I‘ﬁ, s) = El—) él()(l"z, 8i),

sou+LI, sivj=s i=0

where the direct sum is again from the homology calculation in ([5.6]).

For any fixed s, if there are integers (so,...,s,) and (s, ..., s, ) satisfying

ren
n n
! ! .7
S = SgU + Z SiV; = SgU + Z S;U;.
i=1 =1
Then we have
n
(so — sp)v + Z(si — si)vi = 0.
i=1

For any j € {1,...,n}, we have v and v} are divisible by v; for ¢ # j and v; is not divisible by v;.
Hence we must have s; — s’ is divisible by v;. If

’Ui—l
2 )

|Sj|7|3;'| <

then we must have s; = s;-. As a conclusion, for fixed s, there is a unique s satisfying (5.7). From

(5.8), we have
(Ff, 8) = (FBJ 80).

The remain of the proof is similar to that of Proposition Indeed, there are no differentials for
Ky and Ky, so we do not need to identify differentials in bent complexes.
a

Even though we obtain the identification of the bent complexes as in Proposition [5.10} we still

need to use the A*H;(—Y9;C)-action studied in previous two subsections to identify BE(Ky).
Iterating the construction of Cii 4 in the proof of Lemma we can construct maps

k707k17'~~7k7n . 0 1 n #
(5.9) Ci,ko+k1+~--+kn I @Iy, ®-- @I, — Fko+k1+~--+kn'
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Moreover, we have the commutative diagram

(5.10)
kg,0
P10k 41®1d Fo 1®®F;

0 1 n tokot 0 1 nkot! Fn noorf ,
r @k ® @I} [ ®L, ® I} "————— ®,_, I'(-Y))

kg kqseees k ko+1,kq,..., kn _

oy k0+k1+n +kn Ci,k0+k11+---+wkn -

w’ﬂ0+k1+-~+km# F#
# kgt 1dky 4 +kn # ko+14ki+-+kn o
| SR | R, IF(=Yy)

Since the construction of the map in only involves the neighborhoods of the knots, the map
commutes with the A* H; (—Y9; C)-action and we regard it as a map between the A*H;(—-Y9;C)
modules.

Similar to the computation in Corollary 3.7 (c.f. (5.8)), we have

(ki — Lo + 7
k vk’lv-“vkn
C kot o+ ((Fk0750 + )® @ LSt 211)>

(5.11) " "
(Z )U+Zz ’U'ri
c(l",ft)HCIJr +k,s(ﬂH—st+ 5 L ).
i=1

Note that the last sum Zl 1 Vir; comes from the fact that the homology class of the longitude of
Ky is the sum of the homology classes r; - g; of the longitudes of K; for i = 1,...,n under the

isomorphism ([5.6)).

Proposition 5.11. Suppose . For any large enough integer I and any grading i, the summand
(Fk#,i) is a module Mgy over A*Hq(=Y9;C) for somel, as constructed in . Moreover, the
bypass maps

) W
1/4 k1 (Fk#vl) - (Fk#+1»1 + 5)

18 either an inclusion of module or the identity.

Proof. From [LY22bl Proposition 3.15], if s > g + &= — kp, then we have an isomorphism

H(B*(>s)) = (Tp,s + 7(’“ — 12)p —1)

and if s > —(g + B~ — kp), then we have an isomorphism

2 )
where g = g(Kg) = g(Ko), (p,q) are defined in Subsection and BT (> s),B7(< s) are
subcomplexes of B*(s). Hence for k large enough, we can compute (I‘k#7 i) by B¥(K4) and Lemma
- Note that (p,q) = (v,— X, vir;) for Ky and (p,q) = (1,0) for K;. We only show the

computation for the large grading ¢ and the positive bypass map as follows.
From the identification of B* in Proposition we know

H(B~(< 5)) = (Ty, s —

ko —1
2

s+ ETUOH BT L gk, s 6) = HBH (Ko, > s0) = (0,50 + 70,

2
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where s = sov + Y1, s;v} with [s;| < %L and s, s satisfy the inequality s,s0 > g + ”2;1 — kp for
their corresponding (p, ¢). Let k = > k;. From Lemma we know

(ki — Dv; + 7y

2
From 1) the map C’ﬁok]zﬂrkli"% induces a map from (T, , sﬁ—%g to (T, s—i—%)
. . . . . . 0 ko,

Since there are no differentials for Ko and K, the triangles involving ¢\%; ., and wﬁ;oiltrkir-ﬁkn
split and these two maps are injective. From Lemma after applying the bypass maps for
sufficiently many times k', the restrictions of maps F,?O L and F,f; k, are isomorphisms.
Then the commutativity in (5.10)) implies that

ko —1
2

(I‘}ws, + ) ~ C.

R ket

(k—1)v+ X0, virg
5 )
is an isomorphism. Thus, the proposition follows from the computation in Lemma Corollary

and the commutativity in (5.10]). O

Proof of Theorem[I1.3 Similar to the proof of Theorem [I.1] in the last subsection, we apply the
integral surgery formula Theorem and its truncation Proposition to the connected sum

K4 of Boromean knots and core knots in lens spaces. Since there are no differentials for K4, again
2m42k41
2 . .
Yy o are surjective and

ko,k1,---,kn

ok k(T 50 + ) = (T s+

m+k
+ m+2k—1"

Im 71'7'1{7 p = 1mW
as in 1} Then the dimension of Im W%,k in the truncation can be computed from Proposition
and the two claims in the proof of Theorem

In Heegaard Floer theory, we apply Ozsvath-Szabd’s integral surgery formula for HF. There is
an explicit identification between Heegaard Floer version of B*(Kj) in [OST1, Lemma 10.4] (the
lemma is for the plus version, but setting U = 0 gives the identification for the hat version), which
coincides the identification from the A*H;(—Y,; C)-module structure.

Since the integral surgery formulae in instanton and Heegaard Floer theories have the similar
form and we already show that the complexes and the maps in the formulae coincide, the dimensions
of I* and HF for the surgery manifold are the same. Note that we have to use the dimension over
Fy for HF since [OST1l Lemma 10.4] works over F5. The computations by two claims in the proof
of Theorem [[.1] are independent of the underlying field. O

6. SURGERIES ON SOME ALTERNATING KNOTS

In this section, we use oriented skein relation and an inductive argument to study differentials for
a special family of alternating knots in S2.

6.1. Knots with torsion order one. In this subsection, we introduce a condition on the differen-
tials that is closely related to the thin complex in [Pet13 Definition 6]. Inspired by the U map in
Definition [2:25] we have the following definition.

Definition 6.1. Suppose K c Y is a rationally null-homologous knot of order p. For a large enough
integer n, and a grading i, we define the map

(6.1) U= (7/}E,n+1)71 oYY i1t (Tn,i) = Ty, i = p).

Lemma 6.2. The follow are some basic properties of the map U.
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(1) The map U is well-defined for any i > g — ("_1)+q_1.
(2) For any i so that U is defined, there exists an exact triangle

(% - D)

\dji\ni/ﬂ

nlpq

u’i_
(8) We have F,, oU = F,.

Proof. Part (1) follows from Lemma part (2). Part (2) follows from Lemma [2.4 and Lemma
Part (3) follows from Lemma and Lemma Part (1). O

From Lemma[6.2) part (1), the map U is well-defined on most of the gradings of T',,. Since n is
large, it is enough to focus on ¢ > 0.
From diagram ({2.1)), the differentials d4 induce

(6.2) dit =P 0P,

on the first pages of spectral sequences. The definition is independent of the choice of n due to
Lemma

Lemma 6.3. Suppose K 'Y is a rationally null-homologous knot. The following are equivalent.
(i) dim H(T,,d; +) = dim I*(=Y).
(i) dim H(T,,d; ) = dim I*(—Y).
(iii) For large enough n and any element x € (T'y,, 1) with i > 0, if there exists k € Ny so that
Uk(x) =0, then U(z) =0
(iv) For large enough n any grading i > 0, we have

U((I‘n,i) N ker Fn) = 0.

Proof. If we reverse the orientation of the knot, then positive and negative bypasses in defining
the differentials d; + in Equation exchange with each other. As a result, the two differentials
dy + and dy _ also switch with each other. Hence we conclude that (i) and (ii) are equivalent. The
equivalence between (iii) and (iv) follows easily from Lemma [6.2| Part (3). To show that (i) and (iii)
are equivalent, recall that in [LY2Ic] the construction of the differentials d; goes with a series of
differentials dj,  defined as
dk,+ = wi,u © ( ?—,n-&—k)il © ¢i,n
In [LY21c], we proved that dj + is well-defined on kerdj_1 +/Imdi_1,+ and

kerdy, , /Tmdy 4 = I*(~Y)

for any large enough k. For simplicity, we suppose n is large enough. Since Im ¢i,n lies in the top
few gradings of I',,, by Definition [6.1] the map U is well-defined on related gradings. Also from
Lemma we know that 4" . is an isomorphism on such gradings, so we can rewrite dy . as

—k
i+ =YY, o U ol

Now statement (i) is equivalent to the fact that dy + = 0 for all k¥ > 2 and it remains to show that
this is equivalent to (iii).
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If there exists u € T', and k > 2 so that d; (u) = 0 for all ¢ < k and dj 4 (u) # 0. Then by
definition there exists y € T',, so that ¢ ,(y) # 0 and U*~!(y) = ¢/, (x) # 0. Since by Lemma

Ur(y) = Uodl . (x) =0

we know that (iii) does not hold. Conversely, if there exists z € T, so that ¢ ImU, U*(z) # 0 and
UFt1(x) = 0 for some k > 1. We know that there exists u € I', so that ¢ , (u) = U*(z) and hence

dit1,+(u) = ¢4 ,(x) # 0.

Hence we conclude that (i) and (iii) are equivalent. O

Definition 6.4. A knot K — Y has torsion order one if it satisfies any equivalent statement in
Lemma

6.2. Commutativity of the first differentials. In this subsection, we prove the commutativity
of two first differentials, which will provide a strong restriction for knots with torsion order one.

Theorem 6.5. For any rationally null-homologous K <Y, we have
dy—ody =dyyod .,
where = means the equation holds up to a scalar.
From [Lil8b], there is a gluing map
G:T,®SHI(-[0,1] x 7%, -, u-T,) > T,.

Here we can identify {0} x T2 with 0(S*\N(K)) and then use the Seifert framing on 0(S*\N(K))
to be the framing on T2 as well. Let &, be the product contact structure on [0, 1] x 72, and

0(&st) € SHI(—[0,1] x T?,~T, u =T,)
be its contact element [BS16b]. Then we know from [Lil8b, Theorem 1.1] that
(6.3) G(-®0(6y)) =1d: T, — T,

We write Y2 = [0,1] x T2 and take n = 0 in the definition of d; 4 in (6.2)) for simplicity. We can
view the bypasses attached originally to (S*\N(K),T',) to be attached to (Yr2,T, uT}) on the
{1} x T? side instead, and they lead to new exact triangles

1[}0
(6.4)  SHI(—Yg2,—T, U —T) = SHI(—Y72, T, U —T)

1[);,0 %

@(_YT% _Fu o _Fu)

Using these bypasses maps, we could construct the map Cii = lj)g s 1/};() just as the construction
of the maps d;,+. We have the following key proposition:

Proposition 6.6. We have
diod (0(s)) = d_ody (6(¢a)) # 0 € SHI(—[0,1] x T? T, u —T),)
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Proof of Theorem using Proposition [6.6, From the functoriality of gluing maps in [LiI8D, Theo-
rem 1.1], we have two commutative diagrams

Id®(dyod_)

I, ® SHI(—Yr2,-T, u-T),)

lc

', ® SHI(=Yr2,-T', u-T),)

ic

di,yody —

r, r,
and
T, @ SHI(— Y2, ~T U ~T) & 1 & SHI(—Vye, Ty U 1)
la ic
r, dy_ody 4 r,

From (6.3), we have G(x ® 0(&st)) = x. Hence, from the commutative diagrams and Proposition
we have

(6.5) diyod_(2)=Ga®dyod_(0(€y)) = Gz ®@d_ody (0(Ex))) = di— ody 4 (2).
0

Then we prove Proposition First note that ci+ and d_ are both constructed via bypasses,
and contact elements are preserved by the gluing maps as in [Lil8b, Theorem 1.1]. As a result,
there are two contact structures £4— and {_; on (Yp2,I', uT,), which are both obtained from &
by attaching four bypasses according to dy 4 ody — and dy,_ o d; 4, respectively, so that

0(64-) =dyod_(6(¢ar)) and (6 ) = d_ o dy (6(5s))-
Lemma 6.7. The contact elements 6(£4_) and 0(£_4) are both nonzero.
Proof. From we know that for any knot K < S3, we have
diqpodi— =G(=®0(&-)) and dy,— ody 4 = G(=®0(£4-)).

We computed the differentials for the figure-eight knot in [LY21d, Section 6], for which we have
di,+ody,— #0and dy,— ody 4+ # 0. Thus the lemma follows. O

Next, to better study the two contact elements, we construct a Z2-grading on SHI(— Y7, T, u
—T,) as follows. View T2 = S' x S'. We call curves that isotopic to S* x {pt} and {pt} x S*
longitudes and meridians, respectively. Take a meridian m on T2, then we have an annulus
A =[0,1] x m < Yp2. We can arrange A,, as a product annulus inside (Yr2,T', uT',). The
decomposition along A,, yields a solid torus with suture being six copies of the longitude. According
to [GL19, Lemma 2.29], we have

SHI(—Yy2,-T, u-T,) =~ C"

As in [GLI9, Theorem 2.28], the surface A,, induces a Z-grading on SHI(—Yp2, —T', u —T,) so that
all six dimensions are all supported at grading 0.

For a second surface, we pick a longitude of [ of T? and obtain a second annulus A; = [0, 1] x [.
Note each component of 0A; intersects the suture I',, twice, so as in [GL19, Theorem 2.28], 4,
induces a Z-grading on SHI(—Y72,—T',, u —T',,) which is supported at three gradings —1, 0, 1. The
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decomposition along A; and —A; both yield a solid torus with sutures being two copies of the
longitude. According to [GL19, Lemma 2.29], we have

SHI(—Yr2,-T,, v —-T,, A, 1) = SHI(—Y72, -I', U =Ty, A, —1) = C.
As a result,
SHI(—Y72,~T, u —T,, A;,0) =~ C2
From [GLI9, Section 5.1], the surfaces A,, and A; together induce a Z2-grading.

Lemma 6.8. Suppose (M,~) is a balanced sutured manifold and S < M be a properly surface. Let
B < OM be a bypass arc, and the bypass attachment along B changes the suture v to v'. Let

'l/} : ﬂ(_Mv _’Y) - @(_Ma _A/)
be the corresponding bypass map. Then v is homogeneous with respect to the grading induced by S

on SHI(—M, —v) and SHI(—M, —~").

Proof. Since f is an arc, we can always perform stabilizations on S in the sense of [Lil9l Definition
3.1] to make S disjoint from S. Then as in the proof of [LiI9l Proposition 5.5], ¢ is clearly
homogeneous. (Il

Lemma 6.9. Suppose (M,~) is a balanced sutured manifold and Sy and Sy are two admissible
surfaces in the sense of [GL19, Definition 2.26] in (M,~). Let (i,7) denotes the Z*-grading on
SHI(M,~) induced by the pair of surfaces (S1,S2). Let

1 1 1 1
ig = ZISH Nyl — 5)((51)7 and jo = ZISz Nyl — S X(52).

Suppose (My,v1) is obtained from (M,~) by decomposing along Sy, and Sy < (My,v1) is obtained
from Sy by cutting along S1. Suppose (Ma,72) is obtained from (My,~y1) by decomposing along Sb.
Then we have an isomorphism

SHI(M,~, (i, jo)) = SHI(Mz, y2).
Proof. By [GLI9, Lemma 2.29], we have
SHI(M, v, S1,i0) = SHI(M1, 1)
Applying this fact again, we conclude that
SHI(M,~, (S1, 52), (i0, jo)) = SHI(M>, 72).
(]

Next, we want to study a graded version of exact triangle . First, we want to figure out the
double grading on SHI(—Y72, —I',, u —T'¢) and SHI(—Y72, —I',, U —T'1) induced by the pair of annuli
(A1, Ap,). For the sutured manifold (—Yp2,—I', u —T'y), A; and A,, each intersects the suture at
two points, so we perform a negative stabilization in the sense of [Lil9, Definition 3.1] on each
of them to obtain two surfaces A, and A;,. Then the Z-grading associated to A;” and A, both
support at grading 0 and 1.

Lemma 6.10. We have
SHI(—Y7p2, T, u —Tg) = C*
and the four generators are supported at bi-gradings (0,0), (0,1), (1,0), and (1,1).
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Proof. This is a direct application of Lemma by looking at the four pair of surfaces (—A;, —A,),
—A;, A, (A, —Ay), (A, Ay). Note when dealing with —A; and —A,,, we need to use a positive
stabilization instead, and use the grading shifting property in [GL19, Theorem 1.12] to relate the
grading induced by Ali and A%. |

For the sutured manifold (—Yr2, —I', U —I'1), the annulus A; intersects the suture four times, so
it induces a Z-grading where all non-vanishing gradings are —1,0,1. The annulus A,, intersects the
suture twice, so we perform a negative stabilization as above and use A, to construct a Z-grading
on SHI(—Y7r2,—T', U —T';). The non-vanishing gradings are 0 and 1.

Lemma 6.11. We have
SHI(~Yz2,—T, u —T;) = C*

and the four generators are supported at bi-gradings (0,—1), (0,0), (1,0), and (1,1).

Proof. This is a direct application of Lemma by looking at the four pair of surfaces (—A;, —A;,),
—A;, A,y (A, —AR), (A1, Ar). Note when dealing with — A,,,, we need to use a positive stabilization
instead, and use the grading shifting property in [GL19, Theorem 1.12] to relate the grading induced
by A} and A,. O

Proof of Proposition[6.6, By Lemma there is a graded version of (6.4]) as follows.

~0,(i(,30)

(66) @(_Yqﬂu _F;L (& _F07 (laﬂjé)) L> @(—YT% _F,LL o _Flv (7’/17.71))
7,#:(0,0)
+0 L)
+om
SHI(—Yr2, T, u—T,,(0,0))
for some indices (i, j;) and (¢}, j;). From above argument, we know that
SHI(—Y72,-T,, u —T',,,(0,0)) =~ C%
From Lemma [6.10, we know that
dim SHI(— Y72, —T,, U =T\, (i), ) < 1.
From Lemma [6.11] we know that
dim SHI(—Y72, -T,, u —TI', (41,41)) < L.
Since the three terms fit into an exact triangle as in , we must have
dim SHI(—Y7=, —T,, U —Tg, (i), j5)) = 1
,(0,0)
+,0

and the map '(ZJ ’

T is surjective. Since we already have the nonvanishing result in Lemma to
show that

0(&4-) = 0(5—+),
it suffices to prove that

P G (0(E4—)) =Pl o(0(E-+)) = 0.

For the contact structure £_ , the image z/AJﬂ:’O(H(f__F)) = 0 because after attaching the last bypass
to £_ 4, the resulting contact structure admits a Giroux torsion so has vanishing contact element by
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[LY21c, Section 4]. For the contact structure &, _, note we have
P o(0(6-4)) = P4 g 0 dy 0 d_(0(&wr))
= ¢i,o © (Wlhu © wi,l) © (1/13,,1 © 1/1571)(9(550)
=0
It is finally zero since éi,o and @[AJ}F ., fit into an exact triangle. O
6.3. Classification of complexes. Suppose K < S? is a knot of torsion order one (c.f. Definition
6.4). From Lemma we know d4 = dj +, i.e. differentials on higher pages vanish. Then Theorem

[6.5] imposes strong restrictions on the differentials. In this subsection, we prove a classification
theorem for complexes of knots of torsion order one.

Lemma 6.12. Suppose K — S® is a knot with torsion order one and
dimT, = [[Ax (#)]],

where || - || is the sum of absolute values of coefficients. Write dy = dy 4+ for simplicity. Then up
to changing a basis, the pair (T'),,d; + d_) is the direct sum of the following three basic types of
complexes, which are called squares for C' and staircases for Cj.

dy
ay agi+1 <—— a2
dl id
dy
Ay <—as g1 <— -
+
dy d_ d_
c<——a dy
. a _ a a
’\'di ld <, %21 3 <— a2
d_ d_
d<=——25
di
Q2| = Q2)i|+1 a1
+
C Cy forl <0 Cy forl>0

where X is the scalar from Theorem[6.5] to make the diagram in C commute.

Proof. The proof is an adaption of the proof of [Pet13, Lemma 7] to our setup. Note that the proof
in the reference studied spaces with coefficients Fo, while we deal with coefficients C here. Theorem
shows that d; and d_ commute up to a scalar, so (d; + d_)? is not necessarily zero if the scalar
is not —1. But we can still carry out the proof similarly.

We now treat (I',,,d; +d_) as a purely algebraic object and prove by induction on the dimension
of T',,. Fix a basis of (T',,, ¢) for each grading ¢ that is homogeneous with respect to the Zs homological
grading. For a basis element b, we say that there is an upward arrow from an element a to b if

d4(a) = A - b+ (linear combination of other basis elements)

for some A # 0. To be consistent with the complex in [Pet13] Lemma 7], we use leftward arrows to
represent upward arrows. In particular, w and z arrows correspond to d, and d_ arrows, respectively.
Note that if b e (I',,4), then a € (I'y,7 — 1) since d = d; 1 shift the Seifert grading by +1. We
define downward arrows using d_ similarly.
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We start with a basis element b, € (I, —g), where g = g(K). Note that —g is the minimal
nontrivial grading of I';,.
Case 1. There is a downward arrow from a to b for some a € (I';,, —g + 1), i.e., we have

d_(a) = > A+ b;
i=1

for some basis elements ba, - - - by, (possibly n = 1). We change the basis by replacing {b1,--- ,b,}
with {b= 3" | A; - b;,ba, -+ ,b,}. Then d_(a) = b. Since b lives in the minimal nontrivial grading,
there is no downward arrow originating at b and no upward arrow pointing to b. If there are other
basis element with downward arrow to b, add a to each of them with a proper coefficient, so that in
the new basis only a has a downward arrow to b. If there is an upward arrow from b’ to a for some
b € (T, —g), then d_ o d, (b') must have nonzero coefficient on b, which contradicts the fact that
dy ody (V) =0 and the commutivity from Theorem [6.5| Hence there is no upward arrow pointing
to a.

Case 1.1. We have d(b) # 0. We will split off a C summand and hence the induction applies.
Indeed, let d = d1 (b) # 0 and ¢ = d(a). From Theorem we have

d_(¢)=d_ody(a) =dyod_(a)=d.(b)=d+#0.

Then Case 1.1 in the proof of [PetI3] Lemma 7] applies verbatim and we can change the basis to
make the following conditions hold:

(1) ¢ and d are basis elements;

(2) b is the only basis element with an upward arrow to d;
(3) ¢ is the only basis element with a downward arrow to d;
(4) a is the only basis element with an upward arrow c;

(5) a is the only basis element with a downward arrow to b.

Hence the span of a, b, ¢, d is a C summand.
Case 1.2. We have d(b) = 0. The grading of b guarantees that b ¢ Imd so

[b] #0€ H(T,,dy) = I*(—S®) = C.

As a result, there is no other generators of H(T',,,d; ). In particular, ¢ = dy(a) # 0 since we have
already argued that there is no upward arrow to a. Now d_(c) = dy od_(b) = 0 by grading argument
and d4 (c) = 0 since d% = 0. As in the proof of [Pet13] Lemma 7], we can change the basis so that c
is a basis element and a is the only basis element with an upward arrow to c.

Case 1.2.1. There is no downward arrow to c. In this case we can split off the staircase spanned
by a, b, and c.

Case 1.2.2. There is a downward arrow to ¢. As in the proof of [Pet13l, Lemma 7], after a
suitable change of basis, either we eliminate the arrow to ¢ so that we can split off a staircase
spanned by a, b, and ¢, or we can find d so that d_(d) = ¢ and d is the only basis element with
a downward arrow to ¢, and we can repeat the argument in Case 1.2 to further trace along the
staircase.

Case 2. There is no downward arrow to b. We will split off a staircase. If d (b) = 0 we split off
the single b. If ¢ = d (b) # 0 we can change the basis to make ¢ a basis element and b is the only
basis element with an upward arrow to c. As above also know that d; (¢) = 0 and d_(¢) = 0. Note
now [b] is the unique generator of H(T',,d_) so we know that there exists d with d_(d) = ¢. As in
the proof of [Petl3l Lemma 7] we can keep this argument to split off a staircase starting from b.

In any case we can split off either a square or a staircase hence the induction applies. |
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Corollary 6.13. Suppose K — S3 is a knot with torsion order one and
dimT), = [[Ax (t)]]-
Then the structure of (T, dy + d_) is determined by Ak (t) and 71(K).

Proof. The proof of [Pet13l Theorem 4] applies verbatim. In particular, there is a unique staircase
Cl with [ = 7'](,[()7 i.e.,

ay € (Ty, —77(K)) and agpy41 € (T, 77(K)).
The remaining squares can then be fixed by Ag(¢). O

Corollary 6.14. Suppose K — S2 is a knot so that K has torsion order one and
dimT,, = Ak ()]
Suppose further that 7(K) = 7(K) = 7. Then for any r = p/q € Q\{0} with ¢ > 1, we have
. (NAx®I+2[r[=3)-¢2+p—q-Q7|-1)] 7>0
dim I¥(53(K)) = dimg, HP(S3(K)) = { (JAx(@)ll + 2171 = 3) - a/2 + |~ p—q- @lr| - D 7 <0
([Ak @I =1) - q/2 + |p] T=0.
Proof. Since 771(K) = 7(K), we know from Lemma and [Pet13l Theorem 1.4] that the differen-

tials in instanton and Heegaard Floer theory have exactly the same structure. Explicitly, there is
one staircase C and k squares for

_ [Ar@[ =27 -1
i :

Despite of the difference in coefficients, we can apply the large surgery formulae in [OS04] and
ILY21c] to obtain

k

dim I*(S3,, (K)) = dimg, HF(S%,,(K))
for any large enough n. Explicitly, we have the following.
(1) A square C contributes two-dimensional subspaces for both (+n)-surgeries
(2) A staircase C; with [ < 0 contributes a n-dimensional subspace for (—n)-surgery and a (n+4|l|—2)-
dimensional subspace for +n-surgery.
(3) A staircase Cj contributes a n-dimensional subspace for both (£n)-surgeries.
(4) A staircase C; with [ > 0 contributes a (n + 41 — 2)-dimensional subspace for (—n)-surgery and
a n-dimensional subspace for +n-surgery.
Note that a figure-eight has one square and a staircase Cy and the torus knot T'(2,2l + 1) has
a staircase C; and no square. Then the corollary follows from the dimension formulae in [BS21]
Theorem 1.1] and [Han20, Proposition 15] for instanton and Heegaard Floer theory. ]

6.4. Induction using oriented skein relation. In this subsection, we study differentials for a
family of knots K (ay,...,as,+1), where ay,...,as,+1 are the numbers of full-twists as in Figure @

Proposition 6.15. Suppose K = K(ay,...,a2,4+1) with a; = 0. Let
k=#{i|a =1}
If k < n+1, then we have the following.

(1) 71(K) = g(K) = n.
(2) K has torsion order one (c.f. Definition[6.])).
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FIGURE 6. The knot K(ay,...,a2,+1)-

Proof of Theorem[1.5, When a; > 0 for all i we know that K is an alternating knot. It follows
from [BS21], Corollary 1.8] and [GLW19, Theorem 1.2] that 7;(K) = 7(K) for all alternating knots.
Moreover, by the spectral sequence in [KMI1a], we know dimT',, = [|Ax(t)||. Then Proposition

and Corollary apply. O

We start by some preparation lemmas. Suppose K, < S is a knot and ¢ is a curve circling
around a crossing of K, as in Figure[l] Write K_ < §%,(5) = $% and Ko = S3(5) = S' x S2. We
can discuss the tau invariant for the knot Ky < S' x S? once we fix an element in I*(—S' x S?).
For any = € Q U {u}, write

' = SHI(-S*\N(K4), —T'y) and T = SHI(—S* x S2\N(Kj), —Ts)
The bypass maps are written as w;’;?? for e € {+,—,0}. The maps F, G?, from surgeries along a
meridian of K, are defined similarly. For simplicity, we will write d} for dj | .

FI1GURE 7. The knots K, K_ and Kj.

Since dim I*(—S! x §2) = 2, we have two effective tau-invariants for the knot Kj. To specify
choices, first note that there is a surgery exact triangle associated to 9:

(6.7) I#(— %) I4(—53)
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Pick a1 # 0 € Im Fs then we can define

n—1

Toy (Ko) = max{i | 3z € (TY,i) s.t. F(x) = a1} — 5

Note Im Fj is 1-dimensional, so it does matter what scalar to put on «;. We pick
ag € IF(—=8 x S?)\ Im Fj

so that the value

n—1
2

Toy (Ko) = max{i | 3z € (T,i) s.t. FO(x) = ap} —

takes the maximal value among all possible as.

Lemma 6.16. For the knots K., K_, and Ky, suppose the following.
(i) dimT} = dimT, + dim T
(i) 77(K_) = T, (Ko) — 1.
(iii) The knots K_ and Kq both have torsion order one.

Then K. has torsion order one.

Proof. The surgery triangle with respect to § gives rise to an exact triangle

49

Condition (i) implies that G5, = 0. Since the surgery maps associated to 6 commutes with the

differentials d} on I'},, we have a short exact sequence of chain complexes:
0— (F;,dl_) — (I‘;,dl_) — (I‘;,dl_) — 0.

The Zigzag lemma gives rise to an exact triangle

(6.8) H(T;, d7) o H(TH, df)
H(T), d9)

From condition (iii) we know that H(T,,d;) = C and H(T'),d?) = C*. So in order to prove the
lemma, it is suffice to show that 0, # 0. To do this, let B2 = Gs(ag) # 0 € I#(—S?). Pick n large
enough and 2z~ € (T, 77(K_)) so that F, (z~) = . Take u™ =9’}  (¢7). It is straightforward

to check that di (v™) =0 and v~ ¢ Imd; . Then H(T',;,d; ) is generated by [u~].
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Pick 29 € (T9, 74, (KY)) so that F?(x) = aa. We have the following diagrams where the triangles
are exact and parallelograms are commutative.

(6.9) T; o T, o r;
L r, VI Vi r, WIm
T, I . r} T, o TWO . r
Gsu L Fsu Gs,u Fs.u
iy "
Claim. We have G5, (29) = U(z7).
Proof of Claim. Suppose not, i.e., y = G5, (29) — Uz~ # 0. Note
F, (y) = F, 0Gsn(ay) = Fy oU(z™) = Gs(a) — Gs(a) = 0.
Hence the fact that K~ has torsion order one implies that y ¢ ImU. As a result,
v =9 (y) = Py 0 Ganla®) # 0.
From the commutativity we know
Gspu© ¢0+’j’+7u(a:g) #0

which contradicts the fact that G5, = 0 implied by Condition (i). O

Now since Uz~ = G,,(29), we know from the commutativity that
UoHsp(x7)=HsnoU(z™)=0.
Then there exists u™ € T} so that Hs,(z7) = % (uT). Take u® = Fs ,(u"), we know from the
commutativity that
V() = Fop o] (uh) = 0.
As a result, d)(u®) = 0. Also, we know
df (u®) =9 oyl (u?)
= Y0 Hon(e)
= Hs o)
= Hs,(u™).
By the construction of dy, we conclude that 0, ([u’]) = [u~] and we conclude the proof of the

lemma.
O

Lemma 6.17. For the knots K, K_, and Ky, suppose we have the following.
(i) All three knots K_, Ko and K have torsion order one.

ii) Either dimI't = dimT'7 + dimTY, or dimTY = dim 7 + dimI'}.
H H Iz Iz Iz

n
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Then T, (Ko) = T[(K+).

Proof. From Condition (ii) and the zigzag lemma there exist an exact triangle

(6.10) H(T,,dy) H(T},dy)
H(T),, d})

Condition (i) implies that H(T}},d}") = C and Fj,, « # 0. Take f; € I%(—=5S3) so that F5(f;) = ;.
Take zt € (I}, 77(K4)) so that Ff (z1) = 81. We know from the commutativity that

FS o Fg’n(ﬁl) = F(; e} FJ(J?+) = Q1.

Hence by the definition of 7 we know 74, (Ko) = 771(K ). Suppose 7o, (Ko) = 71(K ) + k for some
k> 0. Now take vt = ¢ (z+). We know that df (v*) = 0 and v* ¢ Imd{. So H(T'},d{) =~ C is
generated by [vt]. Let v° = Fs ,(v*), we know that Fj , «([v"]) = [v°].

Pick 29 € (TY, 74, (Kp)) so that FO(z9) = a1, then we know that

F? <F57n(x+) - Uk(z?)> =a;—a; =0.
Since K has torsion order one as in Condition (i), we know that
U(Fg,n(:ﬁ) - Uk(x‘;)> =0.

As a result, there exists wt € T so that Fj,(z") — U*(29) = T *(w®). As a result, we know that
M s 1 +,n

0 = F57H(v+)
= 0" 0 Fsn(a™)
g0 (Fa7n<x+> - U’“@?))
= 3Tk (w0)
= d} (w°).

As a result, we know that Fj, «([v"]) = [v°] = 0, which contradicts the fact that Fj, 4 fits into
the exact triangle (6.10) and the fact that Fs, « # 0. O

Lemma 6.18. For the knots K, K_, and Ky, suppose we have the following.

(i) The knots K_ and K both have torsion order one.
(ii) We have dimT), = dimT';, + dim T’}

Then we have the following.

(1) Ko has torsion order one.
(2) We have To,(Ko) = 71(K_).
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Proof. From Condition (ii) and the Zigzag lemma, we have an exact triangle

(6.11) H(T,,dy) H(T},df)
H(TY,dY)

From Condition (i) we know H (T}, d) = H(T},d{) = C so dim H(T),,d?) < 2. On the other
hand, we know dim H(T'%,d?) > dim I*(—S* x §%) = 2. As a result, we know dim H(TY,dY) =2
which implies that Ko has torsion order one, Fs, « # 0, and G5, « # 0.

Note all hypothesis of Lemma [6.17] are satisfied so the argument in the proof of that lemma applies.
In particular, we know 74, (Ky) = 77(K4). We can pick zt € (I}, 77 (K ™)) so that Ff (zT) = i,
and take

2} = Fsn(a"), v = 947, (2}), and v¥ =457, (@),
We know from the proof of Lemma that Fs ,, «([vo7]) = [v]] # 0.

Pick 29 € (TY, 74, (K)) so that F2(29) = as and take v = z/;i’;(xg) It is straightforward to
check that d(vJ) = 0 and v9 ¢ Im dY.

Claim. The homology H (T, dY) is generated by [v{] and [v3].

Proof of Claim. When v{ and v§ have different gradings in l"g, the claim follows immediately from
the fact that dim H(I‘ﬁ, d}) = 2. When v) and v§ have the same grading, which means z§ and
have the same grading in T and hence 7o, (Ko) = 7o, (Ko). In this case, suppose that there exists
complex numbers ¢;, ¢z, not both zero, and an element w° e 1"2 so that

c1-v) + o -vd 4+ dY(w’) = 0.

Take 30 = i’f;(wo), then the above equality is equivalent to

0,
P (er 2l + a2 + ) =0,

which implies that there exists 20 € (T9, 74, (Ko) + 1 = 74, (Ko) + 1) so that
c1-2 +eg-a)+y0 + U0 = 0.

From the construction we know Uy® = 0 hence F?(y") = 0. Since the grading of 2 is strictly larger
than both 7,, (Ko) and 7,,(Kp), the choice of a; and g implies that F2(z) = 0. As a result we
have

cr-ap ey =FOc; -2l +ep-ad+90 + UL =0.

Thus we must have ¢; = ¢ = 0 and hence [v] and [v9] are linearly independent. O

With the help of the above claim, the proof that 7,,(Ky) = 77(K_) is similar to the proof of
Lemma [6.17] O

Proof of Proposition|6.15 We use induction on k to prove the following.

(i) The knot K has genus g(K) = n.

(ii) The coefficient of the term ¢* in Ag(¢) has sign (—1)"".
(iii) The knot has torsion order one.
(iv) We have 77(K) = n.
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When k = 0, the knot is the torus knot T(2,2n + 1), so all the above four statements hold.
Suppose we have proved the above four statements for k. Now we deal with the case k + 1. Without
loss of generality, we can assume that ag,+1 > 1 while ag, = 1. Write

Kl = K(a17a27a37...,a2n,1).

We know K = K,,, . ,. Note K1 = K(ay,az,...,a2,—1) and K; = K(ay,...,a2, = 1,1), so

inductive hypothesis applies to both K_; and K;. Let § be a curve circling around the crossing
corresponding to as, 11 as shown in Figure @ Then we can take K, = K7, K_ = K_4 and there is
a corresponding Ko = S x S2. From [KM10a] we know that

Xgr (F ) = AK+( ) and Xg?"( ) XQT(F ) = Xgr(ro)

Also, since K41 are both alternating knots, we know that
dim Ty, = [[xgr(T})l;
where || - || means the sum of the absolute values of coefficients. Statements (i) and (ii) applied to
K, then implies that
dim T, > [[xgr (T})]]

= lIxgr () = Xgr (T

= [Ixgr DI+ |Ixgr (T

= dimI‘; +dimT',

Then it follows from the exact triangle

r, —>1"+

o\

that dim I‘g = dim 1"; +dimI',. Then we can apply Lemma and Lemma to conclude that
K has torsion order one, and 7o, (Ko) = Ta,(Ko) + 1 = g.

Now for any odd I > 0, we can take K, = K;, K_ = K;_5, and take K| to be the same knot as
the one for K7 and K_;. Hence we can apply Lemma to inductively conclude all four statements.

In the statement of Proposition [6.15] we require that k£ < n + 1. This extra assumption is because
our strategy is to cancel two crossings when as, = 1 and ag,4+1 = —1. In particular, in the proof
we need ag, = 1 through out the induction so that we have enough information to start with to
understand larger as,11. This means at the very beginning we need at least half of a; to be 1. O

7. TWISTED WHITEHEAD DOUBLES AND SPLICINGS

The techniques in Section can also be used to study twisted Whitehead doubles.

Definition 7.1. Suppose V < 53 is an unknotted solid torus. Let K = V be the knot as in Figure
Let /i be a non-separating curve on ov bounding a disk in V and A be a non- separating curve on
oV bounding a disk in S3\V. Let J be a knot in S3 and V a tubular neighborhood of J. Let p and
A be the meridian and Seifert longitude of J, respectively. Let

f:‘7<—>53
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be an embedding so that f(‘A/) =V, f(i) = pand f(A) = \. Let K = f(f() Then K is called the
positively clasped t-twist Whitehead double of J, denoted by D, (J).

FiGURE 8. Whitehead double.

Remark 7.2. We can also study the negatively clasped Whitehead doubles. Note they are the mirror
of positively clasped Whitehead doubles as in [Hed(7].

Here are some basic properties of K.

Lemma 7.3 ([Hed07]). Suppose K is the positively clasped t-twist Whitehead double of J. Then we
have the following.

(1) The genus of K is one.
(2) Ag(T)=—t-T+ (2t +1)—t-T7L

Since the Whitehead doubles all have genus 1, there are only three nontrivial gradings of its KHI
to study. Note the top and bottom gradings are isomorphic to each other. The following lemma
describe the top (and hence the bottom) grading.

Lemma 7.4. Suppose K is the positively clasped t-twist Whitehead double of J. Then
KHI(S?, K, 1) = SHI(S*\N(.J),T ).
Proof. A genus-one Seifert surface S of K can be drawn as in Figure|§| (Inside 17) From the proof
of [KM11bl, Proposition 7.16], we know that there is an isomorphism
KHI(S?, K,1) = SHI(S*\[-1,1] x S, {0} x 29).

As shown in Figure @ the sutured manifold (S®\[—1,1] x S, {0} x 8S) admits a product disk D and
it is straightforward to check that there is a sutured manifold decomposition

(S3\[=1,1] x S, {0} x 0S) 2 (SA\N(J),T_,).

Note we can fix the suture as I'_; by counting its intersections with p and A explicitly. Hence we

conclude that
KHI(S?, K, 1) = SHI(S*\[-1,1] x S, {0} x 85)

~ SHI(S*\N(J),T_¢).

Now we compute the tau invariants for the twisted Whitehead doubles.
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FIGURE 9. A genus-one Seifert surface S of K. Two sides of the Seifert surface
are shaded in red and green. The blue curve « is curve on S bounding a disk
in 17\5’ . This disk can be viewed as a product disk in the sutured manifold
(S3\[-1,1] x S, {0} x 0S).

Lemma 7.5. Suppose K is the positively clasped t-twist Whitehead double of J. Then

)1 t<2-717(J)
TI(K)_{O t>2-7(J)

Proof. Write (K, ,T,,) = SHI(-S?*(K,"),-T,), and (K;",T,,,i) = SHI(=S*(K, ), —T,,i). We take
the surgery exact triangle along the curve 6. The maps in the surgery triangle associated to
commutes with the 2-handle attachments along the meridian of the knots, so we have the following
diagram, for which the triangles are exact and the parallelograms are commutative.

Hsn

(D} (J),Tn)

I'y)
I'y)

(7.1) (D1 (),

Fiiin (K+, Fin
IH(—5%) LB VA I*(—S5%)
I#(—St x §2)

Note the above diagram works for any n € Z, but we fix a large enough n € Z. Here K+ < S x §?
is obtained from D, (J) by performing a O-surgery along 6. Note g(K*) = 1. Also, the knots
D} (J) depends on the companion knot J, yet due to the 3-dimensional light bulb theorem we
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know that K is independent of the companion knot J. As a result, we can assume .J = U is the
unknot to obtain information of J. When J = U, we know D¢ (U) is the unknot and D*, (U) is the
right-handed trefoil. As a result, we know from Lemma and Lemma [6.18] that

Toa, (K1) =1, and 7,,(K") = 0.
Note we also know from [GLWT9] Section 6] that
(Df (U),Tp,1) =0 and (D, (U),T,,,1) = C.

As a result, we know from the exactness that (K*,T,,1) = C. Also, from Lemma m part (2), we
know

(7.2) dim(J,T,) = dim(J,T_g.r, () + [0 + 2 71(J)].
As a result, when t < 277(J), we know from Lemma [7.4] and Lemma [2.4] that
dim(Dyf, ,(J),Tn, 1) = dim(Dy, | (J),T,i, 1) = dim(D; (J), Ty, 1) — 1 = dim(D;f (J), T, 1) — 1.

Hence Fp,, restricted to (D;(J),Ty, 1) is nontrivial. Since 7o, (KT) =1 (c.f. Scction and Fs is
injective, we know that

Ft’n|(D:—+1('])’FTL71) # 0

which implies that 7;(D;,,(J)) = 1.
When ¢ = 277(J), we know similarly that

dim(D;{(J), Ty, 1) = dim(D{ (J),I'p, 1) + 1,
so F,, restricted to (D; (J),T'p, 1) is trivial and the injectivity of Fj implies that
Finlipg, (. =0

which means 7;(D;,,(J)) < 1. To further settle down the 77, we can look at the mirrors of such
knots. Taking the mirror corresponding to reversing the orientation of the 3-manifold so we have a
different diagram

(DF (),
H-5%)

As above, we can use the case J = U and t = —1 to compute that
Toy, (K1) =0, and 7,,(K1) = —1.

As a result we have nyn o F‘(;,n is trivial and the injectivity of Fj implies that

(7.3)

n :_+1(J)7Fn)

) Ho D
(K+,T,)

Fiyin

I# (=S x §?)

Fypl ——— =0,
tv”'(DrH(J),rmn
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which means 7;(D;7,,(J)) < 1 for any ¢ € Z. In particular, for ¢ > 2 - 77(J), we must have
71(Df1(J)) = 0. O

Remark 7.6. Lemma 7.5 answers [BS21, Question 1.25] affirmatively.

Proof of Theorem[I.7] Part (1) and part (2) are Lemma[7.4) and Lemma [7.5 Part (3) follows from
Lemma [7.3] Lemma and Corollary [8.4] U

Proof of Theorem[1.9 Let K be the positively clasped 0-twist Whitehead double of J. Let L < ov
be a meridian of V" as in Figurew The knot S? ; (K) can be viewed as the splicing of the complements

of the knot J < S% and the knot L < S3 l(IA( ). Tt is well-known that the two components of the

Whitehead link can be swapped so SEL(I?) is still 3, while the knot L = S3 | (I?) becomes the

knot K,,. Theorem part (3) applies to compute the (+1)-surgeries of the knot K. Then we can
apply Theorem 1.1] after knowing (+1)-surgeries. O

SIES

F1GURE 10. The two components of a Whitehead double link can be swapped.

8. ALMOST L-SPACE KNOTS

In this section, we study almost L-space knots; see (1.2)) for the definition. We adopt the following
notations from [LY21c, Definition 5.2]: Let K < S3 be a knot (so that (p,q) = (1,0)). Define
).

n—1

2

T = (Ty,i+ nT—l) and B, ; = (Ty,i —

By Lemma part (2), we know that when n > 2¢g(K) + 1,
Thi = Thy1, and By = By ;.
We can rewrite the bypass exact triangles in Lemma using 7T, ; and B, ; as follows.

Lemma 8.1. Adopting the notations as above, we have the following two bypass exact triangles:

2n—1 2n—1
v, 2 Y_m
(I‘ 2n—1, Z) Tn,i (F 2n—1, l) Bn,i
2 2
e e
By_1,i-1 Th1,i+1
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Furthermore, we have the following.
(1) ([LY22d, Theorem 1.12] or from the large surgery formula) When n = 2g(K) + 1, we have
F(-S2,(K)= &P (Canos, i) @C" 2970
lil<g(K)
(2) ([LY21d, Proposition 5.5]) We have
77l,_n172 © ’l/)r—L,n—l = z,_n172 o wi,n—l = O
Theorem 8.2. Suppose K < S is an almost L-space knot. Then we have the following.
(1) If g(K) = 2, then dim KHI(S3, K,i) < 1 for any i € Z such that |i| > 1. Furthermore, the

knot K 1is fibered and strongly quasi-positive.
(2) If g(K) = 1, then either K is the figure-eight or 71(K) =1 and

0 li] > 1
KHI(S? K,i) =~ { C? il =1

CorC® i=0

(3) If g(K) = 2, then

0 [i| > 2
KHI(S®, K, i) ~ 4 il =2

CorC? |i|=1

CorC® i=0

Proof. Suppose n € N, so that dim I*(S3(K)) = n. From [BS21] Section 2.2], we have the following
exact triangle

(S (K)) (S 11 (K))

~.

I#(S%)
From the fact that I#(S%) =~ C, we know either dim I*(S3 . ;(K)) = n+ 1, which implies that K is an
instanton L-space knot and hence a contradiction, or dim I*(S3 +1(K)) = n+ 3. Hence, by induction
we can assume that n = 2g + 1. Suppose K is the mirror of K. We have I*(—S2,,(K)) = I*(S3(K)).

From now on, all sutured instanton homologies are for the mirror knot. Applying Lemma [8.1] we
know that

@ (Fm,z) = (C29+3.
il<g

From Lemma [2.2§ part (1), we know that
(I‘%,Z) = (I‘%, —’L).
From [LY21Dbl, Proposition 1.21], we know that
\(dim(T s, ) = X(FH(=5%) = 1.
As a result, we conclude that

(Pzu-1,i) = C when 0 < |i| < g and (Tz21,0) = C°.
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When g(K) = 2, the argument for fact that dim KHI(—S®, K,i) < 1 in the proof of [LY2Ic
Theorem 5.14] applies verbatim for |i| > 1. In particular, for i = g, we can apply [LY21c, Lemma
5.7] (with m = g) to conclude that (for the knot K) B, 41 = 0. By Lemma m part (1), we know
that

n—1 n—1

(I‘nal_g"_ )E(I‘n,g—l—

) =Bng-—1=0.
From [Lil9, Section 5], we know that

n—1

@(_Ss7k71_g);(rnal_g+ )=07
which, implies that 7;(K) = —g as in Definition m By Lemma we know 77(K) = g.
From [KMI11bl Proposition 7.16] and [KM10a, Proposition 4.1], the fact that

dim KHI(—-S*, K, g(K)) < 1

implies K is fibered. The fibration gives rise to a partial open book decomposition and hence a
contact structure £ on S3. Note K is strongly quasi-positive if and only if ¢ is tight on S2. We can
perturb K so that K is Lengendrian in (53, &) and, furthermore, the knot complement S3\N(K) is
obtained by removing a standard tight contact neighborhood of K from S2. Let ¢ be the restriction
of £ on S?\N(K). Hence 0(S*\N(K)) is convex with dividing set described by the suture T, for
some integer m € Z. We can perform suitable stabilizations to make m > 2¢g(K) + 1. In [BS16a],
Baldwin-Sivek defined a contact invariant 6(¢’) € T';,,. By the proof of [BS22c¢, Theorem 1.17] and
(the conclusion of) [BS22c, Theorem 1.18], we know that

0(¢") #0€e (T'm,g) = C.

We can attach a contact 2-handle along the meridian of K to (S3,T,,) so that the sutured manifold
becomes S3(1), which is a 3-ball with a connected simple closed curve as the suture. After gluing,
the contact structure & on (S*\N(K),T',,) becomes the restriction of ¢ on S3(1). So by [BSI6al,
Theorem 1.2], we have

Fn(0(€)) = 0(ls31y) € SHI(=5%(1)) = IF(=5?).

where Fy, is the map associated to the contact 2-handle attachment. Note by [GLW19l Proposition
3.17] and the fact that 77(K) = g, we know that

0(&ls3(1y) # 0

which implies that ¢ is tight on S by [BS16a, Theorem 1.3]. Hence we conclude that K is strongly
quasi-positive.

To prove the arguments when g(K) < 2, we need to un-package the proof of [LY21d, Lemma 5.7
and Lemma 5.8]. First, assume g(K) = 1. From above discussions, we can pick n > 6 and have

o (c ji=1
Tons,1) =
(Faps, ) {<c3 i=0.

lle
lle

(T2n1,4) = (F2ns, i)

From Lemma [2.4] and the definition of T},, we know that

n—1

Tpi=(Tp, 1+ ) =~ KHI(—S% K, 1).




60 ZHENKUN LI AND FAN YE

Assume T}, ; =~ KHI(—S%, K, 1) = C*. Lemma leads to the following diagram where the vertical

and horizontal sequences are exact:

(I‘%,l)gc

l

Tn,l = (Ck
n,1
Y1
2n—3,0 n—1,0
LY Pinla

(Fy,()) = (CS —_— anl,O —_— Tn,2)1 = (Ck

where the second superscript of the bypass map indicates the grading. Note since (T’ anot, 1) = C,
the map zﬂﬁl_l is either injective or surjective.

Genus 1, case 1 1/)2’717471 is surjective. Then by the exactness B,_1,0 =~ C*~!. From Lemma
part (3), we know that wz;};% = 0 so from the exactness we know that 3 = k — 1 + &, which means
k = 2. Thus, we know that KHI(—S3, K, +1) =~ C* = C2. Applying Lemma we know that

n—2

_ —1
dim KHI(—S3, K,0) < dim(T', 1 + ”T) +dim(Ty_1,0 + ).
From the definitions of 7}, ; and B, ; and Lemma we know that

_1
dim(Tp, 1+ 2

)=dimT,; =k =2, and

n—2 n—

) = dim(l"n,l, — B)

Hence dim KHI(—S%, K, 0) < 3. From the Euler characteristic result in [KM10a, Theorem 1.1], we
know that dim KHI(—S3, K, 0) is odd, so it must be either 1 or 3.
It remains to show that 77(K) = 1 for all such knots. By [Lil9, Section 5], if n > 3 then

2
dim(Ty_1,0 + )=dimB,_19=k—1=1.

n—1

n—1
2 )

KHI(-S% K,0) = (T,,,0 + )= CFYT,, -1+

lle

C.
Note the last isomorphism follows from Lemma Also, there is an exact triangle by Lemma [6.2
part (2).

KHI(—S%, K, 0) g KHI(-S3, K, —1)

\/

KHI(-S3, K, —1) = C?

Hence we know

U|@(*S3,E,O) = 0

and hence by the definition of 7; and Lemma we know 77(K) = —717(K) = 1.
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Genus 1, case 2 wﬁ’,lnfl is injective. Then by the exactness B,_1, = Ck+1, Lemma implies
another exact triangle

(]__‘%,1) ~C

n—1,0 l

w n—2
i Tn_271 ECkH(FM,O) ~C3

2
n—2,1
l#’_,n_s

B30 =~ CF!

By, = CF!

The vertical exactness implies that ¢E,_n2i13 is injective and hence from Lemma part (3), we know

that wijnlg is zero. Hence from the horizontal exactness we know k + 14k = 3, which means k = 1.

From [KMI10al Proposition 4.1] we know K is fibered. It is well-known that there are only two
genus-one fibered knots in S3, namely the trefoil and the figure-eight, among which the trefoil is an
L-space knot. Hence K is the figure-eight.

Finally we study the case of g(K) = 2. First, as in the proof of part (1), since KHI(—S%, K, 2) # 0,
we can apply [LY21d, Lemma 5.7] directly with m = 2 and conclude that for n > 9, we have
KHI(—S3,K,2) =~ T2 = Cand B,_11 = 0. Note we have
n—1

2
and hence from Lemma 2.4 and Lemma 228 we know
n 1) ~ ([0 — n—1
Then the argument above for genus-one almost L-space knots applies verbatim and we can conclude
the following two cases:

Genus 2, case 17,1 = C and B,,_1 0 =~ C2

Genus 2, case 2T, 1 = C? and B,,_1, = C. Note in both cases from Lemma and Lemma
228 we know that

(Fn+1> -1+

)= Bpy1q = By_11 =0.

KHI(-S* K,—1) = (T',,—1) = (T',,0 + ) = Bno= By_10-

_ 1
dim KHI(— 83, K,0) < dim(T,,, 1 + ”T) + dim(Tp1,0 + g)

— dim T}, 1 + dim(Tpyq,0 — g)
=dim7T, 1 +dim By, 41
=dim7T, +dimB,_1 9
= 3.
Hence we conclude the proof of part (3). U

Remark 8.3. For genus-two almost L-space knots, we know
dim KHI(S? K,2) = 1 and dim KHI(S® K,1) =1 or 2.

Recent techniques developed in [BHS21, BLSY21] can show that dim KHI(S3, K, 2) = 1 implies that
K =T, 15, while the case dim KHI(S3, K, 1) = 2 is still open.

The techniques in proving the above lemma can also lead to the following.
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Corollary 8.4. Suppose K is a genus-one knot so that I*(S;(K)) = 2d + 1, then either
(1) dimKHI(S3, K,1) =d+ 1 and 7/(K) = 1, or
(2) dimKHI(S?, K,1) = d and 77(K) < 0.

Proof. Note g(K) = 1 so by [BS21}, Section 1.1 and Theorem 1.1], we know that dim I*(S3(K)) =
2d + 3. From Lemma [8.1] we know that if n > 7,

dim @ (FL;,i) =2d + 3.

—1<i<1

Lemma [8.1] implies a triangle

~

(I"n—la 1- ’an2)
From Lemma, with Y = 53, we know that

—1 -2
i ):Oand(I‘n,l,l—n2 )

lle
@}

(T,2 +

so we conclude that

I
—_

dim(l"@, 1) = dim(l"@, —1)
2 2
As a result, we have
dim(l"mT—l,O) =2d+ 1.

The argument in the proof of Theorem for the case ¢ = 1 applies. The original setup
dim(l"% ,0) = C3 is the case d = 1. So as in that proof, we have two cases

Case 1. KHI(—S5% K,1) = T,,; =~ C**!, B, ;0= C% and 7/(K) = 1.

Case 2. KHI(-S% K, 1) = T,,; =~ C% B, 1= C%! Asin the proof of Theorem we know

n—1

KHI(—S3 K,0) = (T',_1,0 + )= By_10 = CH!

and
n—1

—)=C.

KHI(—S® K,—1) = (T,,_1, -1+

12

From the exact triangle in Lemma part (2)

KHI(—S%, K,0) ~ C+! KHI(—S%, K,—1) = C

\ /

KHI(-S3,K,—1) = C¢

the map U : KHI(—S%, K,0) — KHI(—S%, K, —1) is surjective and hence 77(K) = 0 which implies
that 7(K) < 0. O
Corollary 8.5. Suppose K < S® is a knot with g(K) Then

> 2.
dim I*(S3(K)) = 5.
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Proof. Suppose the contrary, that dim I*(S7(K)) < 3. Then there are two cases: K is either an
instanton L-space knot or an almost L-space knot. If K is an instanton L-space knot we can apply
the main result in [LPCS20] (or [LY2Ic]) and conclude that dim I*(S?(K)) = 5 directly. If K is
an almost L-space then from Theorem and [GLWI9 Theorem 1.2], we know that the invariant
V4(K) in [BS21] satisfies
V(K) = 2m%(K)—1=2r(K)—1=2g(K)—13>3.

Then from [BS21, Theorem 1.1] we know that dim I*(S3(K)) = 5. O
Corollary 8.6. Suppose K = 15n43522, then we have 11(K) = 0 and

0 i
KHI(S? K,i) =~ {C? i
C° il

\%

1
1
) 0

Proof. From [BS22b], we know that g(K) = 1, Ak (t) = 2t —3+2t~1, and dimg fTﬁ((SS, K,1)=2.
From [LY22¢, Corollary 1.4], we know that dim KHI(S3, K,1) = 2. From the Euler characterisic
result in [KM10al Theorem 1.1], we know that dim KHI(S?, K, 1) is either 3 or 5. If it is 3-dimensional,
from [LY2Ic, Proposition 6.8], we know that either

dim I*(S$(K)) = 3 or dim I*(S3,(K)) = 3.
However this contradicts Corollary [8.5 and the facts that
S3(K) = 452 (942) and S? | (K) = +5%,(820)
as in the proof of [BS22bl Proposition Al]. As a result, we must have
dim KHI(S?, K,1) = 5.
O
Proof of Theorem[I.13. We know from [LY22c, [BS22b] that up to mirror K must be one in the

following list:
52, D3 (J), 15043502, P(—3,3,2n + 1).
Since K = 53 is an alternating knot it follows from [KM11al that
dim KHI(S*, K) = ||Ag(t)]| = 7.

For K = D3 (J) or P(—3,3,2n + 1), we know that

Ag(t)=—2t+5—2t71
From [KM10al Theorem 1.1] we know that

dim KHI(S? K,0) = 5.
From the proof of [LY21c, Proposition 6.3], we know that

dim KHI(S3, K,0) < 5.

As a result, we have
dim KHI(S? K,0) = 5.
For K = D5 (J) or 15n43522, we know that
Ag(t) =2t -3+ 2t 1
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From the above argument we know that
dim KHI(S® K,0) =3 or 5.
If dim KHI(S3, K,0) = 3 then [LY21d, Proposition 6.8] and Corollary imply that
T1(K) = +1
which contradicts Corollary [8.6] and Lemma O

Proof of Theorem[I.11} Part (1) follows from Theorem We prove part (2) as follows. From
Theorem [8.2 part (2), when K is a genus-one almost L-space knot, we have either KHI(S3, K,1) =~ C
so that K is the figure eight, or KHI(S%, K,1) = C2. In the latter case, we know from Theorem
that K = 5, is indeed an almost L-space knot again by [LY21c, Theorem 1.20]. (]

Proof of Corollary[1.13 If dim I*(S}(K)) = 3, we know that either K is an L-space knot or an
almost L-space knot. From Corollary we know that g(K) = 1. Then the corollary follows from
Theorem [[.11] part (2). O
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