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Abstract. This is a companion paper to earlier work of the authors, which proved an integral
surgery formula for framed instanton homology. First, we present an enhancement of the large
surgery formula, a rational surgery formula for null-homologous knots in any 3-manifold, and a

formula encoding a large portion of I7pS3
0pKqq. Second, we use the integral surgery formula to

study the framed instanton homology of many 3-manifolds: Seifert fibered spaces with nonzero
orbifold degrees, especially nontrivial circle bundles over any orientable surface, surgeries on a
family of alternating knots and all twisted Whitehead doubles, and splicings with twist knots.

Finally, we use the previous techniques and computations to study almost L-space knots, i.e., the
knots K Ă S3 with dim I7pS3

npKqq “ n ` 2 for some n P N`. We show that an almost L-space
knot of genus at least 2 is fibered and strongly quasi-positive, and a genus-one almost L-space

knot must be either the figure eight or the mirror of the 52 knot in Rolfsen’s knot table.
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1. Introduction

Sutured instanton homology SHIpM,γq for a balanced sutured manifold pM,γq was introduced by
Kronheimer-Mrowka [KM11b] and it leads to many important instanton invariants of 3-manifolds and
knots. Among them the framed instanton homology I7pY q for a 3-manifold Y and the instanton knot
invariant KHIpY,Kq for a knot K Ă Y are the two most important ones. It has been known that
the framed instanton homology is closely related to the SUp2q-representations of the fundamental
group π1pY q and hence understanding its structural property and computing its dimension is an
essential task in the study of instanton theory. However, the fact that instanton Floer homology
is constructed based on a set of partial differential equation makes this task very difficult. Some
previous computational results were obtained in [Sca15, LPCS20, BS19, BS21].

Motivated by the conjecture proposed by Kronheimer-Mrowka [KM10b] that framed instanton
homology and the hat version of Heegaard Floer homology are isomorphic to each other, and the
known structural properties in the Heegaard Floer theory established by Ozsváth-Szabó [OS04,
OS08, OS11], the authors of the current paper have established many structural properties that
relates the framed instanton homology to instanton knot homology:

(1) In [LY21b, LY21a], we established a decomposition of SHIpM,γq along H1pM ;Zq, and showed
that the enhanced Euler characteristic associated to this decomposition equals to the Euler
characteristic of SFHpM,γq with respect to the spinc decomposition.

(2) In [LY21c], for a rationally null-homologous knot K Ă Y , we constructed two differentials d` and
d´ on KHIpY,Kq so that the homologies are isomorphic to I7pY q. Using those differentials, we
constructed some complexes called bent complexes whose homologies computing I7pYnpKqq,
where YnpKq is obtained from Y by Dehn surgery along K with a large coefficient n.

(3) In [LY22b], we established a formula based on the bent complexes that computes I7pYmpKqq
for any nonzero integral m-surgery.

Many applications already have been found based on this work: the proof that π1pS
3zLq for

almost all link L admits an irreducible SUp2q-representation in [XZ21], the proof that π1pS
3
3pKqq for

any nontrivial knot admits an irreducible SUp2q-representation in [BLSY21], a strong restriction on
the Alexander polynomial ∆Kptq for any instanton L-space knot K in [LY21c], and the computation
of I7pS3

r pKqq for any genus-one quasi-alternating knot K in [LY21c], etc.
In this paper, we present more applications of our previous work from (1) to (3), further

demonstrating the power of these tools in dealing with the Dehn surgeries of knots: we upgrade the
integral surgery formula proved in [LY22b] to a rational surgery formula; we study the 0-surgery for
knots inside S3, which is a missing case in [LY22b]; we study almost L-space knots, which admit
a surgery with next-to-minimal framed instanton homology, and we present the computations of
many new families of the framed instanton homology of 3-manifolds, including most Seifert fibered
3-manifolds with non-zero orbifold degrees, the Dehn surgery along a large family of alternating
knots and all twisted Whitehead doubles, and splicings of the complement of a twist knot with the
complement of an arbitrary knot in S3. Below, we give an outline of the contents of individual
sections, providing more details of these results.

Section 2. We review notations and results about surgery formulae in [LY21c, LY22b]. We
truncate the integral surgery formula to make them simpler for further usage. As a byproduct, we
weaken the assumption on the large coefficient in the large surgery formula. Especially, when K is
null-homologous, the integer 2gpKq ´ 1 is large enough to apply the large surgery formula, while in
[LY21c] the minimal integer is 2gpKq ` 1.
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Section 3. We establish a rational surgery formula for all null-homologous knots in instanton
theory. The proof is similar to that in Heegaard Floer theory [OS11]. Suppose K Ă Y is a null-
homologous knot. The rational surgery along K can be interpreted as the integral surgery along a
knot K# Ă Y#Lpp, qq. The knot K# is obtained by the connected sum of K and a core knot in
Lpp, qq (whose complement is a solid torus) for pp, qq chosen according to the surgery slope. We
establish a connected sum formula for the differentials on bent complexes in such case and then
apply the integral surgery formula to complete the proof.

Section 4. The statement of the integral surgery formula in [LY22b] excludes the case of 0-surgery,
i.e. the filling slope is the boundary of a Seifert surface. However, for a knot K Ă S3, we can
still understand a large portion of I7pS3

0pKqq by examining an extra grading: After performing
the 0-surgery, the Seifert surface of K is capped off by the meridian disk of the filling solid torus,
which becomes an essential closed surface in S3

0pKq. From [BS19, Section 2.6], this surface induces
a Z-grading

(1.1) I7pS3
0pKqq –

gpKq´1
à

s“1´gpKq

I7pS3
0pKq, sq.

In this case, the integral surgery formula can be stated and proven grading-wise. As a result, we
could understand I7pS3

0pKq, sq for all s but 0.

The next three sections are about computations. To apply the integral surgery formula for a
specific knot, there are two main tasks to solve:

(1) To compute differentials d˘ on KHIpY,Kq;
(2) To find the isomorphism HpKHIpY,Kq, d`q – HpKHIpY,Kq, d´q in the statement of the

surgery formula (c.f. Theorem 2.16).

In the following three sections we present many methods to deal with the above task (1) and (2).

Section 5. We deal with the borromean knot as in Figure 1 and the connected sums of a few
copies of them. Any such knot K is inside a 3-manifold Y that is the connected sum of a few copies
of S1 ˆ S2. For this special families of knot, we have

KHIpY,Kq – I7pY q

so task (1) is trivial. Moreover, the H1pY q-action in this case is essential: we have an identification

I7pY q “ Λ˚H1pY q.

Hence we can regard all related instanton Floer homology groups as modules over the ring Λ˚H1pY q
and the task (2) can be done via the module structure.

It is worth mentioning that prior to the current paper, most computations of I7pY q are for
rational homology sphere Y , while our computations for (connected sums of) Borromean knots,
up to the author’s knowledge, provide a first family of knots inside 3-manifolds with positive first
Betti number for which the framed instanton homology of their Dehn surgeries can be computed
systematically. It is well-known that the nonzero integral surgeries of connected sums of Borromean
knots give nontrivial circle bundles over orientable surfaces. Hence we obtain the following.

Theorem 1.1. For any g ą 1, m ‰ 0, suppose Y gm is the circle bundle over a surface of genus g
with Euler number m. We have the following.
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K

0

0

Figure 1. The Borromean knot K inside S1 ˆ S2#S1 ˆ S2. The two copies of
S1ˆS2 come from the zero surgeries on the two (black) components of the Borromean
link.

(1) If |m| ě 2g ´ 1, then
dim I7pY gmq “ 22g ¨ |m|.

(2) If |m| “ 2l with l ď g ´ 1, then

dim I7pY gmq “ 22g ¨ |m| ` 4 ¨
g´l´1
ÿ

j“1

j´1
ÿ

i“0

ˆ

2g

i

˙

` 2 ¨
g´l´1
ÿ

i“0

ˆ

2g

i

˙

.

(3) If |m| “ 2l ´ 1 with l ď k ´ 1, then

dim I7pY gmq “ 22g ¨ |m| ` 4 ¨
g´l
ÿ

j“1

j´1
ÿ

i“0

ˆ

2g

i

˙

Remark 1.2. In [OS08, Theorem 5.5], Ozsváth-Szabó provided a formula for HF`redpY
g
mq by the

integral surgery formula for HF`.

Furthermore, we can recover any Seifert fibered space with nonzero orbifold degree by a non-zero
integral surgery along the connected sum of Borromean knots and suitable core knots in lens spaces.
We also use the Λ˚H1pY q-module structure to solve task (2). As a result, we prove the following
theorem, which generalizes Alfieri-Baldwin-Dai-Sivek’s result for Seifert fibered manifolds that are
rational homology spheres [ABDS20, Corollary 1.3].

Theorem 1.3. Let Y be a Seifert fibered space over a genus g orbifold with Seifert invariants
pm, r1{v1, . . . , rn{vnq. Suppose the orbifold degree is

deg Y “ m`
n
ÿ

i“1

r1

v1
.

If deg Y ‰ 0 and gcdpvi, vjq “ 1 for any i ‰ j P t1, . . . , nu, then

dimC I
7pY q “ dimF2

yHF pY q.

Remark 1.4. It is possible to compute dimC I
7pY q in Theorem 1.3 explicitly as in [OS11, Theorem

10.1]. We need the condition deg Y ‰ 0 because we do not have a zero-surgery formula for knots
inside general manifolds and deg Y “ 0 corresponds to the zero-surgery on the connected sum.
We need the condition gcdpvi, vjq “ 1 because we want the first homology of the complement of
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the connected sum to be torsion-free, so that we can use the grading from the Seifert surface to
capture all information in the spinc decomposition of Heegaard Floer theory. This condition could
be removed if we utilize the work in [LY21a] to obtain a further composition of our integral surgery
formula.

Section 6. We also study more families of knots inside S3. Since now there are isomorphisms

HpKHIpS3,Kq, d`q – HpKHIpS3,Kq, d´q – I7pS3q – C,
the choice of the isomorphism between them is only up to a scalar. Hence task (2) is trivial, and all
we need is to deal with task (1).

It is well-known that alternating knots are thin in the Heegaard Floer theory [OS03]. From
Petkova’s classification of thin complexes [Pet13, Section 3.1], the knot Floer complex of an alternating
knot are fully determined by its Alexander polynomial and the tau invariant (which is related to
the signature for alternating knots). Since there is no known integral Maslov grading in instanton
theory, we do not have a proper definition of thin knots in instanton setting.

Instead, we can consider knots whose two spectral sequences from KHIpS3,Kq to I7pS3q collapse
on the second pages, i.e. only differentials d1,˘ are nontrivial. We call such knots have torsion
order one (c.f. Definition 6.4). For knots having torsion order one, we have similar classification of
complexes involving d˘ as the thin complexes, and hence the complexes are again fully determined
by the Alexander polynomial and the tau invariant in instanton theory.

In oder to prove that some families of knots have torsion order one, we make use of the oriented
skein relation in instanton theory studied in [Lim10, KM10a]. Unlike the original setup, where we
have an oriented smoothing of the crossing to derive a link in S3, we consider its knotification, or
equivalently a knot inside S1 ˆ S2.

This idea of using oriented skein relation works for a large family of alternating knots. In
particular, we can deal with the family of knots as shown in Figure 2. The signs of the crossings are
unusual because the induction starts with the torus knots T p2, 2n` 1q (i.e. ai “ 0 for all i), whose
crossings are all positive. We prove those knots have torsion order one and then we can compute
the framed instanton homologies on their surgeries.

a1 a2 a2n`1

ai “ 1

Figure 2. The knot Kpa1, . . . , a2n`1q.

Theorem 1.5. Suppose K Ă S3 is a knot as shown in Figure 2 so that

ai ě 0 for all i “ 1, . . . , 2n` 1, and
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#ti | ai ě 1u ď n` 1.

Then we have gpKq “ n and for any r “ p{q P Qzt0u with q ě 1, we have

dim I7pS3
r pKqq “ dimF2

yHF pS3
r pKqq “

||∆Kptq|| ´ 2n´ 3q ¨ q

2
` |p´ q ¨ p2n´ 1q|,

where || ¨ || is the sum of absolute values of coefficients.

Remark 1.6. The one-dimensional argument that task (2) is trivial for knots inside S3 can also be
generalized to a knot K in any instanton L-space Y . If H1pY zNpKq;Zq is torsion-free, then we
may use the grading from the Seifert surface to decompose our integral surgery formula, so that the
one-dimensional argument can be applied to each summand. If H1pY zNpKq;Zq is not torsion-free,
we could utilize the work in [LY21a] to obtain a decomposition, but that needs a further study
between the interaction of the decomposition and the construction of the integral surgery formula
(c.f. Remark 1.4).

Section 7. We also use the techniques involving oriented skein relation to study twisted Whitehead
doubles.

Theorem 1.7. Suppose K “ D`t pJq is the t-twisted Whitehead double of J with positive clasp; see
Figure 3. Suppose τI is the instanton tau invariant and Γn Ă BpS

3zNpJqq consist of two copies of
curves with slope ´n. Then we have the following.

(1) KHIpS3,K, 1q – SHIpS3zNpJq,Γ´tq.

(2) τIpKq “

#

1 t ă 2 ¨ τIpJq

0 t ě 2 ¨ τIpJq

(3) dim I7pS3
˘1pKqq “

#

2 ¨ dimSHIpS3zNpJq,Γ´tq ¯ 1 t ă 2 ¨ τIpJq

2 ¨ dimSHIpS3zNpJq,Γ´tq ` 1 t ě 2 ¨ τIpJq

n n “ 1

Figure 3. Whitehead double.

Remark 1.8. According to [BS21, Theorem 1.1], the data provided in Theorem 1.7 part (3) is enough
to compute the framed instanton homology of all nonzero rational surgeries of the twisted Whitehead
doubles with positive clasps. Also, note we have

D´mpKq “ D`´mp sKq,

where K̄ is the mirror of K. So we also know all the information for twisted Whitehead doubles
with negative clasps.
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Theorem 1.7 can also be applied to study splicings with knot complements of twist knots. Note
that twist knots Kn are the positively clasped n-twisted Whitehead doubles of the unknot.

Theorem 1.9. Suppose Kn is the twist knot. Suppose J Ă S3 is a non-trivial knot. Let Y be
obtained by gluing the complement of Kn with the complement of J so that the gluing map sends the
meridian of one knot to the longitude of the other and vice versa. Let Γ0 Ă BpS

3zNpJqq consist of
two Seifert longitudes. Then

dim I7pY q “

#

2 ¨ |n| ¨ dimSHIpS3zNpJq,Γ0q ` 1 τIpJq ď 0

|n| ¨ p2 ¨ dimSHIpS3zNpJq,Γ0q ´ 1q ` |1` n| τIpJq ą 0

Remark 1.10. From [GLW19, Section 5.2], we have the following equality for n P Z (c.f. Lemma
2.28)

dimSHIpS3zNpJq,Γnq “ dimSHIpS3zNpJq,Γ´2τIpKqq ` |n` 2τIpKq|.

So for a knot K Ă S3, as long as we know its τI and dimSHIpS3zNpJq,Γnq for any one n P Z, we
obtain the dimensions for all n P Z. Furthuermore, from Theorem 1.7 and Theorem 1.9, we obtain
the framed instanton homology of Dehn surgeries along all of their twisted Whitehead doubles as
well as the splicing with the complements of the twist knots. Here is the list of knots where all such
data are known.

‚ Genus-one quasi-alternating knots (c.f. [LY21c, Section 6]).
‚ Instanton L-space knots (c.f. [LY21c, Section 5]).
‚ Knots described in Theorem 1.5 (c.f. Section 6).

Section 8. Finally, we study almost L-space knots in S3. A knot K Ă S3 is called an almost
(instanton) L-space knot if it is not an instanton L-space knot and there exists n P N` so that

(1.2) dim I7pS3
npKqq “ n` 2.

Note that n ` 2 is the second minimal value of the dimension since the Euler characteristic is n
[Sca15, Corollary 1.4]. See [BS22a] for the results in Heegaard Floer theroy.

Similar to the previous work on instanton L-space knots [LY21c], we can impose strong restrictions
on almost L-space knots. Moreover, we can classify all genus-one almost L-space knots.

Theorem 1.11. Suppose K Ă S3 is an almost L-space knot. Then we have the following.

(1) If gpKq ě 2, then K is fibered, strongly quasi-positive, and τIpKq “ gpKq.
(2) If gpKq “ 1, then K is either the figure eight or the mirror of the 52 knot in Rolfsen’s knot

table (with signature ´4, denoted by 5̄2).

A direct corollary of Theorem 1.11 is the following.

Corollary 1.12. Suppose K Ă S3 is a knot. Suppose further that

dim I7pS3
1qpKq “ 3.

Then K is either the left-handed trefoil, the figure-eight, or the knot 5̄2.

The proof for gpKq ě 2 largely depends on our previous work in [LY21c, Section 5]. The
classification of genus-one almost L-space knots are more complicated. We first proved that
KHIpS3,Kq is 1- or 2-dimensional in the top Alexander grading, for which we know a list of all
possible knots. If the top grading is 1-dimensional, then the knot is fibered [KM10b, Corollary 7.19].
It is well-known that the trefoil and the figure eight are the only genus-one fibered knots. If the top
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grading is 2-dimensional, recently Baldwin-Sivek [BS22b] classified all such knots in the Heegaard
Floer setting. According to [LY22c], the same results applied to the instanton setting. This also
leads to the following theorem, which is a complete classification of genus-one nearly fibered knot in
terms of instanton knot homology.

Theorem 1.13. Suppose K Ă S3 is a genus-one knot with

dimKHIpS3,K, 1q “ 2.

Let J be the right-handed trefoil. Then we know the following.

(1) K “ 52 or its mirror if and only if

dimKHIpS3,Kq “ 7.

(2) K is the knot 15n43522, D
´
2 pJq or their mirrors if and only if

dimKHIpS3,K, 1q “ 9 and ∆Kptq “ 2t´ 3` 2t´1.

(3) K is one of the pretzel knot P p´3, 3, 2n ` 1q for some n P Z, D`2 pJq, or their mirrors if
and only if

dimKHIpS3,K, 1q “ 9 and ∆Kptq “ ´2t` 5´ 2t´1.

Remark 1.14. Prior to the computation in this paper, due to Baldwin-Sivek’s work [BS22b], we
know that if K is genus-one and dimKHIpS3,K, 1q “ 2, then K must be one of the knots listed
in Theorem 1.13. Furthermore, we have already known that dimKHIpS3,Kq “ 7 for K “ 52 and
dimKHIpS3,K, 1q “ 9 for K “ P p´3, 3, 2n ` 1q and K “ D`2 pJq. The last piece for the above
complete classification is the computations for D`´pJq and 15n43522. This is finished in Section 7
and Section 8, respectively, via studying their Dehn surgeries.

Acknowledgement. The authors thank John A. Baldwin and Steven Sivek for introducing us
to almost L-space knots. The authors also thank Ciprian Manolescu, Thomas E. Mark, Tomasz
Mrowka, and Jacob Rasmussen for helpful comments and valuable discussions.

2. Preliminaries on surgery formulae

2.1. Conventions. If it is not mentioned, all manifolds are smooth, oriented, and connected.
Homology groups and cohomology groups are with Z coefficients. We write Zn for Z{nZ and F2 for
the field with two elements. If there is no subscript for dim, then it means dimC.

A knot K Ă Y is called null-homologous if it represents the trivial homology class in H1pY ;Zq,
while it is called rationally null-homologous if it represents the trivial homology class in H1pY ;Qq.

For any oriented 3-manifold M , we write ´M for the manifold obtained from M by reversing the
orientation. For any surface S in M and any suture γ Ă BM , we write S and γ for the same surface
and suture in ´M , without reversing their orientations. For a knot K in a 3-manifold Y , we write
p´Y,Kq for the induced knot in ´Y with induced orientation, called the mirror knot of K. The
corresponding balanced sutured manifold is p´Y zNpKq,´γKq.

2.2. Sutured instanton homology for knot complements. For any balanced sutured man-
ifold pM,γq [Juh06, Definition 2.2], Kronheimer-Mrowka [KM10b, Section 7] constructed an isomor-
phism class of C-vector spaces SHIpM,γq. Later, Baldwin-Sivek [BS15, Section 9] dealt with the
naturality issue and constructed (untwisted and twisted vesions of) projectively transitive systems
related to SHIpM,γq. We will use the twisted version, which we write as SHIpM,γq and call
sutured instanton homology.
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Moreover, there is a relative Z2-grading on SHIpM,γq obtained from the construction of su-
tured instanton homology, which we consider as a homological grading and use to take Euler
characteristic.

Definition 2.1. Suppose K is a knot in a closed 3-manifold Y . Let Y p1q :“ Y zB3 and let δ be
a simple closed curve on BY p1q – S2. Let Y zNpKq be the knot complement and let Γµ be two
oppositely oriented meridians of K on BpY zNpKqq – T 2. Define

I7pY q :“ SHIpY p1q, δq and KHIpY,Kq :“ SHIpY zNpKq,Γµq.

From now on, we will suppose K Ă Y is a rationally null-homologous knot and fix some notations.
Let µ be the meridian of K and pick a longitude λ (so that λ ¨ µ “ 1) to fix a framing of K. We will
always assume Y zNpKq is irreducible, but many results still hold due to the following connected
sum formula of sutured instanton homology [Li18a, Section 1.8]:

SHIpY 1#Y zNpKq, γq – I7pY 1q b SHIpY zNpKq, γq.

Given coprime integers r and s, let Γr{s be the suture on BpY zNpKqq consists of two oppositely
oriented, simple closed curves of slope ´r{s, with respect to the chosen framing (i.e. the homology
of the curves are ˘p´rµ` sλq P H1pBNpKqq). Pick S to be a minimal genus Seifert surface of K.

Convention. We will use p to denote the order of rKs P H1pY q, i.e., p is the minimal positive
integer satisfying prKs “ 0 P H1pY q. Let q “ BS ¨ λ and let g “ gpSq be the genus of S. When K is
null-homologous, we always choose the Seifert framing λ “ BS. In such case, we have pp, qq “ p1, 0q.

Remark 2.2. The meanings of p and q follow from [LY22b], but are different from our previous

papers [LY22a, LY21c]. Before, we used µ̂ and λ̂ to denote the meridian of the knot K and the
preferred framing. When BS is connected, it is the same as the homological longitude λ in previous
papers. Hence p and q in this paper should be q and q0 in previous papers.

For simplicity, we use the bold symbol of the suture to represent the sutured instanton homology
of the balanced sutured manifold with the reversed orientation:

Γr{s :“ SHIp´pY zNpKqq,´Γr{sq.

When pr, sq “ p˘1, 0q, we write Γr{s “ Γµ. When s “ ˘1, we write Γn “ Γn{1 “ Γp´nq{p´1q. We
also write Γµ and Γn for the corresponding sutured instanton homologies.

Also, we write

Yr{s :“ I7p´Y´r{spKqq,

and in particular

Yn :“ I7p´Y´npKqq and Y :“ I7p´Y q.

We always assume that S has minimal intersections with Γr{s. By work of [Li19], the Seifert

surface S induces either a Z-grading or a pZ` 1
2 q-grading on Γr{s, depending on the parity of the

intersection number BS ¨ psλ´ rµq. We write the graded part of Γr{s as

pΓr{s, iq :“ SHIp´pY zNpKqq,´Γr{s, S, iq

with i P Z or i P Z` 1
2 , depending on the parity of the intersection number.

For simplicity, we omit the definitions of bypass maps ψ˚˘,˚ and surgery maps Fn,Gn,Hn,An´1,Bn´1,Cn
in [LY22b, Section 2.2] and only list their properties as follows. The proofs and references can be
found in [LY22b, Section 2.2].
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Lemma 2.3. We have pΓr{s, iq “ 0 when

|i| ą g `
|rp´ sq| ´ 1

2
.

Lemma 2.4. For any n P Z, there are two graded bypass exact triangles

pΓn, i`
p
2 q

ψn`,n`1 // pΓn`1, iq

ψn`1
`,µxx

pΓµ, i´
np´q

2 q

ψµ
`,n

gg

pΓn, i´
p
2 q

ψn´,n`1 // pΓn`1, iq

ψn`1
´,µxx

pΓµ, i`
np´q

2 q

ψµ
´,n

gg

where the maps are homogeneous with respect to the homological Z2-gradings.

Definition 2.5. The maps in Lemma 2.4 are called bypass maps. The ones with subscripts `
and ´ are called positive and negative bypass maps, respectively. We will use ˘ to denote one
of the bypass maps. For any integer n and any positive integer k, define

Ψn
˘,n`k :“ ψn`k´1

˘,n`k ˝ ¨ ¨ ¨ ˝ ψ
n
˘,n`1 : Γn Ñ Γn`k.

Lemma 2.6. For any n P Z, we have the following commutative diagrams up to scalars.

Γn
ψn`,n`1 //

ψn´,n`1

��

Γn`1

ψn`1
´,n`2

��
Γn`1

ψn`1
`,n`2 // Γn`2

Γn`2

ψn`2
`,µ //

ψn`2
´,µ

��

Γµ

ψµ
`,n

��
Γµ

ψµ
´,n // Γn

Lemma 2.7. For any n P Z, we have the following commutative diagrams up to scalars

Γn
ψn`,n`1 // Γn`1

Γµ

ψµ
´,n

``

ψµ
´,n`1

<< Γn
ψn´,n`1 // Γn`1

Γµ

ψµ
`,n

``

ψµ
`,n`1

<<

Γn
ψn`,n`1 //

ψn´,µ   

Γn`1

ψn`1
´,µ||

Γµ

Γn
ψn´,n`1 //

ψn`,µ   

Γn`1

ψn`1
`,µ||

Γµ
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Lemma 2.8. For a knot K Ă Y and n P Z, there are two graded bypass exact triangles

pΓn´1, i`
np´q

2 q

ψn´1

`, 2n´1
2 // pΓ 2n´1

2
, iq

ψ
2n´1

2
`,n

ww
pΓn, i´

pn´1qp´q
2 q

ψn`,n´1

hh

pΓn´1, i´
np´q

2 q

ψn´1

´, 2n´1
2 // pΓ 2n´1

2
, iq

ψ
2n´1

2
´,n

ww
pΓn, i`

pn´1qp´q
2 q

ψn´,n´1

hh

Lemma 2.9. For a knot K Ă Y and n P Z, there are commutative diagrams up to scalars

Γµ
ψµ
`,n´1 //

ψµ
´,n´1

��

Γn´1

ψn´1

`, 2n´1
2

��
Γn´1

ψn´1

´, 2n´1
2 // Γ 2n´1

2

Γ 2n´1
2

ψ
2n´1

2
`,n //

ψ
2n´1

2
´,n

��

Γn

ψn´,µ

��
Γn

ψn`,µ // Γµ

Γµ
ψµ
`,n´1 // Γn´1

Γn

ψn´,µ

``

ψn`,n´1

<< Γµ
ψµ
´,n´1 // Γn´1

Γn

ψn`,µ

``

ψn´,n´1

<<

Γn´1

ψ
2n´1

2
`,n´1 //

ψn´1
`,n !!

Γ 2n´1
2

ψ
2n´1

2
´,n

||
Γn

Γn´1

ψ
2n´1

2
´,n´1 //

ψn´1
´,n !!

Γ 2n´1
2

ψ
2n´1

2
`,n

||
Γn

Lemma 2.10. For any n P Z, we have the following exact triangles.

Γn
Hn // Γn`1

Fn`1}}
Y

Gn

`` Γµ
An´1 // Γn´1

Bn´1||
Yn

Cn

aa

Lemma 2.11. For any n P Z, we have the following commutative diagrams up to scalars
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Γn
ψn`,n`1 // Γn`1

Y

Gn

``

Gn`1

== Γn
ψn´,n`1 // Γn`1

Y

Gn

``

Gn`1

==

Γn
ψn`,n`1 //

Fn   

Γn`1

Fn`1}}
Y

Γn
ψn´,n`1 //

Fn   

Γn`1

Fn`1}}
Y

Lemma 2.12 ([LY22a, Lemma 4.17, Proposition 4.26, Lemma 4.29 and Proposition 4.32]). Let Fn
and Gn be defined as in Lemma 2.10. Then for any large enough integer n, we have the following
properties

(1) The map Gn´1 is zero and Fn is surjective. Moreover, for any grading

g ´
np´ q ´ 1

2
ď i0 ď

np´ q ´ 1

2
´ g ´ p` 1,

the restriction of the map

Fn :
p´1
à

i“0

pΓn, i0 ` iq Ñ Y

is an isomorphism.
(2) The map F´n`1 is zero and G´n is injective. Moreover, for any grading

g ´
np` q ´ 1

2
ď i0 ď

np` q ´ 1

2
´ g ´ p` 1,

the map

Proj ˝G´n : Y Ñ

p´1
à

i“0

pΓ´n, i0 ` iq,

is an isomorphism, where

Proj : Γ´n Ñ
p´1
à

i“0

pΓ´n, i0 ` iq

is the projection.

Lemma 2.13. For any n P Z, let the maps Hn and ψn˘,n`1 be defined as in Lemma 2.10 and
Lemma 2.4 respectively. Then there exist c1, c2 P Czt0u so that

Hn “ c1ψ
n
`,n`1 ` c2ψ

n
´,n`1

Convention. Though maps between projectively transitive systems are only well-defined up to
scalars in Czt0u, in [LY22b, Section 2.3], we introduced a way to fix the representatives of the systems
and the scalars of maps between them. Hence we can consider sutured instanton homologies used in
this paper as actual vector spaces and all commutative diagrams above hold without introducing
scalars except the second commutative diagram in Lemma 2.6. Moreover, we can set the scalars
c1 “ 1 and c2 “ ´1 for any n P Z in Lemma 2.13.
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2.3. Integral surgery formulae. Suppose K Ă Y is a rationally null-homologous knot with a
Seifert surface S. Suppose pλ, µq is the chosen framing for K and pp, qq defined as in Section 2.2.
Then we state two versions of integral surgery formulae, one from the sutured theory and the other
from the bent complex.

Theorem 2.14 ([LY22b, Theorem 3.1]). Suppose m is a fixed integer such that mp´ q ‰ 0, i.e., the
suture Γm is not parallel to BS. Then for any large enough integer k, there exists an exact triangle

Γ 2m`2k´1
2

π // Γm`2k´1

zz
Ym

dd

where π “ π`m,k ` π
´
m,k and

π˘m,k “ Ψm`k
˘,m`2k´1 ˝ ψ

2m`2k´1
2

¯,m`k

are compositions of bypass maps. Hence we have an isomorphism

Ym – HpConepπ`m,k ` π
´
m,kqq – kerπ ‘ cokerπ.

In [LY21c, Section 3.4], for any rationally null-homologous knot K Ă Y , we constructed two
spectral sequences tEr,`, dr,`urě1 and tEr,´, dr,´urě1 from Γµ to Y, where the Z-grading shift of
dr,˘ is ˘rp. Sketchly, we obtain two spectral sequences from the following unrolled exact couples
about bypass maps

(2.1) ¨ ¨ ¨ Γn`1
oo

ψn`1
˘,µ !!

Γn
ψn˘,n`1oo

ψn˘,µ ��

Γn´1

ψn´1
˘,noo

ψn´1
˘,µ !!

Γn´2

ψn´2
˘,n´1oo ¨ ¨ ¨oo

¨ ¨ ¨ Γµ

ψµ
˘,n

??

Γµ

ψµ
˘,n´1

==

Γµ

ψµ
˘,n´2

==

¨ ¨ ¨

The spectral sequences are independent of the choice of n. Then we lift the spectral sequences
to filtered chain complexes with differentials d` and d´ by fixing an inner product on Γµ. By
construction we have

HpΓµ, d`q – HpΓµ, d´q – Y.

Definition 2.15 ([LY21c, Construction 3.27 and Definition 5.12]). For any rationally null-homologous
knot K Ă Y , let B˘pKq be the complexes pΓµ, d˘q. For any integer s, define the bent complex

ApK, sq :“ p
à

kPZ
pΓµ, s` kpq, dsq,

where for any element x P pΓµ, s` kpq,

dspxq “

$

’

&

’

%

d`pxq k ą 0,

d`pxq ` d´pxq k “ 0,

d´pxq k ă 0.

Let B˘pK, sq be copies of B˘pKq. Define

π`pK, sq : ApK, sq Ñ B`pK, sq and π´pK, sq : ApK, sq Ñ B´pK, sq
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by

π`pK, sqpxq “

#

x k ě 0,

0 k ă 0,
and π´pK, sqpxq “

#

x k ď 0,

0 k ą 0,

where x P pΓµ, s` kpq. Define

π˘pKq :
à

sPZ
ApK, sq Ñ

à

sPZ
B˘pK, sq

by putting π˘pK, sq together for all s . We also use the same notation for the induced map on
homology. If K is fixed, we will omit it in ApK, sq, B˘pK, sq and π˘pK, sq.

Theorem 2.16 ([LY22b, Theorem 3.18]). Suppose m is a fixed integer such that mp´ q ‰ 0. Then
there exists a grading preserving isomorphism

Ξm :
à

sPZ
HpB`psqq

–
ÝÑ

à

sPZ
HpB´ps`mp´ qqq

so that

Ym – H

ˆ

Conepπ´ ` Ξm ˝ π
` :

à

sPZ
HpApsqq Ñ

à

sPZ
HpB´psqqq

˙

.

Remark 2.17. Theorem 2.14 is a little stronger than Theorem 2.16 when we consider the Λ˚H1pY ;Cq-
action on the sutured instanton homology. From Corollary 5.4, the action is trivial on Γµ of the
Borromean knot, and hence is trivial on the bent complex. But it is nontrivial on Γn by Lemma 5.3.
In this paper, we will use both versions of surgery formulae.

2.4. Truncation of the integral surgery formulae. In this subsection, we will use the following
algebraic lemma to truncate the integral surgery formula.

Lemma 2.18. Suppose pC, dCq is a chain complex and suppose C “ D‘E‘F . For A,B P tD,E, F u,
we write dAB : AÑ B for the restriction of dC . We write elements in C as column vectors. Suppose
dC has the form

dC “

¨

˝

0 dDE 0
0 0 0
0 dFE dFF

˛

‚

where dDE is an isomorphism. Then we have an isomorphism

HpC, dCq – HpF, dFF q.

Proof. We have a short exact sequence

0 Ñ D ‘ E Ñ C Ñ F Ñ 0

which induces a long exact sequence. The assumption on dC implies HpD ‘ Eq “ 0 and hence
HpCq – HpF q. �

We also need some structural lemmas for sutured instanton homologies.

Lemma 2.19. Suppose K Ă Y is a framed rationally null-homologous knot. Suppose n P Z so that
pn´ 1qp´ q ě 2g, then we have the following.

(1) When |i| ą np´q´1
2 ` g, we have pΓn, iq “ 0.

(2) When np´q´1
2 ` g ě i ě g ´ np´q´1

2 , we have an isomorphism

ψn¯,n`1 : pΓn,˘iq
–
ÝÑ pΓn`1,˘i˘

p

2
q.
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(3) When np´q´1
2 ´ g ě i, j ě g ´ np´q´1

2 and i´ j “ p, we have an isomorphism

pψn´,n`1q
´1 ˝ ψn`,n`1 : pΓn, iq

–
ÝÑ pΓn, jq.

(4) When g ´ np´q´1
2 ď i0 ď

np´q´1
2 ´ g ´ p` 1, the restriction of the map

Fn :
p´1
à

i“0

pΓn, i0 ` iq Ñ Y

is an isomorphism.

Proof. Part (1) follows directly from Lemma 2.3. Part (2) and (3) follows from Lemma 2.3 and
Lemma 2.4. Part (4) follows from [LY22b, Lemma 2.19 part (1)]. �

Lemma 2.20. Suppose K Ă Y is a framed rationally null-homologous knot. Suppose n P Z so that
pn´ 1qp´ q ě 2g. Then we have the following.

(1) When |i| ą p2n´1qp´2q´1
2 ` g, we have

pΓ 2n´1
2
, iq “ 0.

(2) When p2n´1qp´2q´1
2 ` g ě i ě g ´ p´1

2 , we have an isomorphism

ψ
2n´1

2
˘,n : pΓ 2n´1

2
,˘iq

–
ÝÑ pΓn,˘i¯

pn´ 1qp` q

2
q.

(3) When p2n´1qp´2q´1
2 ´ g ě i ě g ´ p2n´1qp´2q´1

2 , we have an isomorphism

pΓ 2n´1
2
, iq – HpApiqq,

where Apiq is the bent complex defined as in Defintion 2.15.

Proof. Part (1) follows directly from Lemma 2.3. Part (2) follows from Lemma 2.8 and Lemma 2.19
part (1). Part (3) follows from [LY21c, Theorem 3.23]. �

Lemma 2.21. Suppose K Ă Y is a framed rationally null-homologous knot. Suppose π˘m,k is

defined as in Theorem 2.14. Let π˘,im,k be the restriction of π˘m,k on pΓ 2m`2k´1
2

, iq. Then we have the

following.

(1) We have

Imπ˘,im,k Ă pΓm`2k´1, i˘
mp´ q

2
q.

(2) When i ą p´1
2 ` g, we have π˘,˘im,k “ 0.

(3) When i ě p´1
2 ` g, the map π¯,˘im,k is an isomorphism.

Proof. Part (1) follows directly from grading shifts in Lemma 2.4 and Lemma 2.8. For the grading i
in part (2), by Lemma 2.8 and Lemma 2.19, we have

ψ
2m`2k´1

2

¯,m`k “ 0

and hence π˘,˘im,k “ 0. Part (3) follows from Lemma 2.20 part (2) and Lemma 2.19 part (2). �

Proposition 2.22. Suppose m P Z so that mp´ q ‰ 0. Then for any large enough integer k, we
have the following.
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(1) If pm´ 1qp´ q ` 2 ă 2g, then

Ym – H

ˆ

Conepπ1 :
à

|i|ă p´1
2 `g

pΓ 2m`2k´1
2

, iq Ñ
à

|i|ă
p1´mqp`q´1

2 `g

pΓm`2k´1, iqq

˙

,

– H

ˆ

Conepπ2 :
à

|s|ă p´1
2 `g

HpApsqq Ñ

p´1
2 `g´1
à

s“´ p´1
2 `1´mp`q´g

HpB´psqqq

˙

.

(2) If pm´ 1qp´ q ` 2 ě 2g, then

Ym –

p´1
2 `g´1
à

i“ p´1
2 ´mp`q`g

pΓ 2m`2k´1
2

, iq –

p´1
2 `g´1
à

s“ p´1
2 ´mp`q`g

HpApsqq.

Here π1 and π2 are the restrictions of π and π´`Ξm ˝ π
` as defined in Theorem 2.14 and Theorem

2.16.

Proof. This is a reduction of Theorem 2.14 and Theorem 2.16. We only prove the first isomorphism
in each case. The proof of the second isomorphism follows directly by the reformulation of the
integral surgery formula by bent complexes in [LY22b, Section 3.3].

From Lemma 2.21, the grading shift of π˘m,k is mp´q
2 . When i ą p´1

2 ` g, we have π`,im,k “ 0 and

π´,im,k is isomorphism. Let C1 be the total mapping cone in Theorem 2.14 and let

D1 “
à

ią p´1
2 `g

pΓ 2m`2k´1
2

, iq and E1 “
à

ią p´1
2 ´

mp´q
2 `g

pΓm`2k´1, iq.

Then π restricts to π´m,k on D and induce an isomorphism of D – E. Then we apply Lemma 2.18 to

remove D1 ‘E1 from C1. Let C2 be the quotient C1{pD1 ‘E1q. Since π´,im,k is also an isomorphism

for i “ p´1
2 ` g, we can apply Lemma 2.18 again to remove

D2 “ pΓ 2m`2k´1
2

,
p´ 1

2
` gq and E2 “ pΓ 2m`2k´1

2
,
p´ 1

2
´
mp´ q

2
` gq

from C2. Let C3 be the quotient C2{pD2‘E2q. Note that the grading induced by the Seifert surface
is either a Z-grading or a pZ` 1

2 q-grading. If

p´ 1

2
´
mp´ q

2
` g ą

1

2
,

then we can similarly apply Lemma 2.18 to

D3 “
à

iă´ p´1
2 ´g

pΓ 2m`2k´1
2

, iq and E3 “
à

iă´ p´1
2 `

mp´q
2 ´g

pΓm`2k´1, iq

and then also

D4 “ pΓ 2m`2k´1
2

,´
p´ 1

2
´ gq and E4 “ pΓ 2m`2k´1

2
,´

p´ 1

2
`
mp´ q

2
´ gq.

We conclude that

HpC1q – H

ˆ

Conepπ1 :
à

|i|ă p´1
2 `g

pΓ 2m`2k´1
2

, iq Ñ
à

|i|ă
p1´mqp`q´1

2 `g

pΓm`2k´1, iqq

˙

.
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If
p´ 1

2
´
mp´ q

2
` g ď

1

2
,

then we can apply Lemma 2.18 to

D13 “
à

iă p´1
2 ´mp`q`g

pΓ 2m`2k´1
2

, iq and E13 “
à

iă p´1
2 ´

mp´q
2 `g

pΓm`2k´1, iq.

We conclude that

HpC1q –

p´1
2 `g´1
à

i“ p´1
2 ´mp`q`g

pΓ 2m`2k´1
2

, iq

�

If K is null-homologous, then pp, qq “ p1, 0q. The inequality pm ´ 1qp ´ q ` 2 ě 2g reduces to
m ě 2g ´ 1. In such case, the result in Proposition 2.22 is indeed stronger than the large surgery
formula in [LY21c, Theorem 1.22] because the assumption in that paper is m ě 2g ` 1. This
difference is essential when g is small (e.g. g “ 1).

Proposition 2.23. Suppose K Ă Y is a null-homologous knot bounding a Seifert surface of genus
1. Then for any m P N`, we have

dim I7pYmpKqq “ dim I7pY1pKqq ` pm´ 1q ¨ dim I7pY q.

Proof. Since g “ 1, we apply Proposition 2.22 part (2) to any m ą 0. In particular, we have

Y1 – HpAp0qq and Ym –

0
à

s“´m`1

HpApsqq.

By construction of Apsq in Definition 2.15, we know

HpApsqq – HpB`psqq – Y

for any s ă 0. Since dim I7p´Y q “ dim I7pY q for any closed 3-manifold Y , we conclude the dimension
equality. �

Remark 2.24. When Y is a rational homology sphere, this corollary follows directly from the
adjunction inequality for the instanton cobordism map; see for example [BS19, Theorem 1.16].
However, for technical reasons such adjunction inequality relies on the assumption that the first
Betti number of the cobordism vanishes. So when b1pY q ą 0, the existing adjunction inequality does
not apply.

2.5. Instanton tau invariant. We present some results from [GLW19] for knots inside S3.

Definition 2.25 ([Li19, Definition 5.4]). Suppose K Ă Y is a rationally null-homologous knot. Let
KHI´p´Y,Kq be the direct limit of

¨ ¨ ¨ Ñ Γn
ψn´,n`1
ÝÝÝÝÝÑ Γn`1

ψn´,n`2
ÝÝÝÝÝÑ Γn`2 Ñ ¨ ¨ ¨ .

Let U be the action on KHI´p´Y,Kq defined by tψn`,n`1unPN` . It is well-defined due to the
commutativity from Lemma 2.6.

Definition 2.26 ([Li19, Definition 5.7]). Suppose K Ă S3 is a knot. We define

τIpKq “ maxti | D x P KHI´p´S3,K, iq s.t. U j ¨ x ‰ 0 for any j ě 0u.

We have the following basic properties for τI .
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Lemma 2.27. Suppose K Ă S3 is a knot. Then we have the following.

(1) ([GLW19, Proposition 3.17 and Corollary 5.3]) For n P Z large enough, we have

τIpKq “ maxti | D x P pΓn, iq s.t. Fnpxq ‰ 0 P I7p´S3qu ´
n´ 1

2

“ minti | D x P pΓn, iq s.t. Fnpxq ‰ 0 P I7p´S3qu `
n´ 1

2
.

(2) ([GLW19, Proposition 1.12 and Proposition 1.14]) We have τIpKq “ ´τIp sKq where sK is
the mirror of K.

Lemma 2.28 ([GLW19, Section 5]). Suppose K Ă S3 is a knot. Then we have the following.

(1) For any ˚ P QY tµu, we have pΓ˚, iq – pΓ˚,´iq.
(2) For any n P Z, we have

dim Γn “ dim Γ´2τIpKq ` |n` 2τIpKq|

3. A rational surgery formula

Suppose K is a null-homologous knot in a 3-manifold Y . In this section, we will study the
u{v-surgery on K. The integral surgery formula Theorem 2.16 is an analog of the Morse (integral)
surgery formula for Heegaard Floer homology in [OS11, Section 6]. To generalize the formula to
rational surgeries, we use the same strategy as in [OS11, Section 7]. For simplicity, we use similar
notations as in Ozsváth-Szabó’s work [OS11]. The symbols pp, q, r, aq in [OS11] are replaced by
pu, v, r,mq since we define p and q in Section 2.2 (indeed pp, qq “ p1, 0q because K is null-homologous).
Suppose

m “ t
u

v
u

is the greatest integer smaller than or equal to u{v, and
u

v
“ m`

r

v
.

Let Ov{r be the knot obtained by viewing one component of the Hopf link as a knot inside the lens
space Lpv,´rq thought of as ´v{r surgery on the other component of the Hopf link, which is framed
by the Seifert framing of the unknot in S3. Note that Ov{r is a core knot of the lens space, i.e.,
the complement is a solid torus. Since Yu{vpKq can be obtained by m-surgery on the connected sum

K#Ov{r Ă Y#Lpv,´rq,

it suffices to understand the bent complex associated to K#Ov{r in terms of the bent complex of K.

3.1. The connected sum with a core knot. Given two knots Ki Ă Yi for i “ 1, 2, let K 1 Ă Y 1

be the connected sum of K1 and K2. Note that Y 1zNpK 1q is obtained from gluing YizNpKiq by
an annulus along the meridians of Ki for i “ 1, 2. Conversely, the disjoint union of YizNpKiq is
obtained from Y 1zNpK 1q by a product annulus decomposition in the sense of [KM10b, Proposition
6.7]. The instanton version of that proposition implies

(3.1) KHIpY 1,K 1q – KHIpY1,K1q bKHIpY2,K2q.

Moreover, if Ki are rationally null-homologous, in our previous work [LY21c, Proposition 5.15], we
generalized the above isomorphism to a graded version with respect to gradings associated to Seifert
surfaces. (Note the result in [LY21c, Proposition 5.15] states for knots inside rational homology
spheres but the proof works for rationally null-homologous knots inside arbitrary 3-manifolds.)
However, we need a stronger version of the connected sum formula which encodes the information
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in bent complexes. Inspired by the formula in Heegaard Floer theory [OS04, Lemma 7.1], we have
the following conjecture.

Conjecture 3.1. Suppose Ki Ă Yi for i “ 1, 2 are rationally null-homologous knots. Then there
exist chain homotopy equivalences

B˘pK1#K2q » B˘pK1q bB
˘pK2q,

where B˘pKq is defined in Definition 2.15.

The proof of the above conjecture is an on-going project with Ghosh [GLY]. In this subsection,
we only prove the special case where K2 is a core knot in a lens space. First, we present some results
for core knots.

Lemma 3.2 ([Li19, Proposition 4.10]). Suppose K is a core knot in a lens space Y , then we have

pΓr{s, iq – C for any |i| ď
|rp´ sq| ´ 1

2
.

For other grading i, we have pΓr{s, iq “ 0.

Corollary 3.3. Suppose K is a core knot in a lens space Y . Then the bypass exact triangles in
Lemma 2.4 are always split, and there are two canonical isomorphisms induced by bypass maps
between the direct sum of two spaces with smaller dimensions and the third space.

Proof. From Lemma 3.2, we know dimensions of Γn,Γn`1,Γµ are |np ´ q|, |pn ` 1qp ´ q|, |p|,
respectively. Since the sum of two smaller integers equals to the third integer, we know the triangles
always split. Since each nontrivial grading summands Γn,Γn`1,Γµ are 1-dimensional, the restrictions
of the bypass maps induce the canonical isomorphisms. �

From Lemma 3.2, for a core knot K Ă Y , we have

dim KHIp´Y,Kq “ dim I7p´Y q and d˘ “ 0.

Then Conjecture 3.1 reduces to the following proposition.

Proposition 3.4. Suppose K1 Ă Y1 is a rationally null-homologous knot and K2 Ă Y2 is a core
knot in a lens space. Then there exist identifications

B˘pK1#K2q “ B˘pK1q bKHIp´Y2,K2q.

Convention. To distinguish sutures for different knot complements, we write Γ‚r{s, ψ
n,‚
˘,n`1, and

F ‚n with ‚ P t1, 2,#u for the sutured instanton homology, bypass maps, and the cobordism maps in
Lemma 2.10 associated to the knots K1,K2 and K1#K2.

To prove Theorem 3.4, we need the following lemma, which generalizes results in [GLW19, Section
3.2].

Lemma 3.5. Suppose Ki Ă Yi for i “ 1, 2 is a rationally null-homologous knot. Suppose n and k
are large integers. Then there exist maps

Cn,k
˘,n`k : Γ1

n b Γ2
k Ñ Γ#

n`k and Cµ,k˘,µ : Γ1
µ b Γ2

k Ñ Γ#
µ

so that we have the following commutative diagrams.
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(3.2) Γ1
µ b Γ2

k

ψµ,1
˘,nbId

//

Cµ,k
˘,µ

��

Γ1
n b Γ2

k

ψn,1
˘,µbId

//

Cn,k
˘,n`k

��

Γ1
µ b Γ2

k

Cµ,k
˘,µ

��
Γ#
µ

ψµ,#
˘,n`k // Γ#

n`k

ψn`k,#
˘,µ // Γ#

µ

(3.3) Γ1
n b Γ2

k

ψn,1
˘,n`1bId

//

Cn,k
˘,m`n

��

Γ1
n`1 b Γ2

k

Cn`1,k
˘,n`k`1

��

F 1
n`1bF

2
k // I7p´Y1q b I

7p´Y2q

“

��
Γ#
n`k

ψn`k,#
˘,n`k`1 // Γ#

n`k`1

F#
n`k`1 // I7p´Y#q

(3.4) Γ1
µ b Γ2

k

Idbψk,2
˘,µ //

Cµ,k
˘,µ

""

Γ1
µ b Γ2

µ

Γ#
µ

“

<<

where the the identification in (3.3) comes from the connected sum formula for I7 (c.f. [Li18a,
Section 1.8]) and the identification in (3.4) comes from the sutured decomposition along the product
annulus.

Proof. The proof is similar to the arguments in [GLW19, Section 4], especially the proof of [GLW19,
Lemma 4.3] and the proof of [GLW19, Proposition 1.14]. Although the proofs in [GLW19] was only
carried out for knots inside S3, the same argument essentially works for rationally null-homologous
knots in general 3-manifolds. Here we only sketch the proofs as follows. We only prove for the case
involving positive bypasses. The case for the negative bypasses is similar.

We attach a 1-handle h1 to pY1zNpK1q,Γ
1
nq \ pY2zNpK2q,Γ

2
kq so that the two attaching points of

the one handles are on the curve pnµ1 ´ λ1q Ă Γ1
n and pkµ2 ´ λ2q Ă Γ2

k respectively. (For negative
bypasses, we attach the 1-handle to pλ1´nµ1q and pλ2´kµ2q accordingly. Note that the orientations
of curves are different.) See Figure 4. Then we can attach a 2-handle h2 along the curve α which
goes through the 1-handle h1 and intersects the suture obtained from attaching the 1-handle twice,
as shown in Figure 4. Define

Cn,k
`,m`k “ Ch2 ˝ Ch1 .

Here Ch2 and Ch1 are the contact handle attaching maps as introduced by Baldwin-Sivek in [BS16a].
Pick the bypass arc β so that it intersects the curve pλ2 ´ kµ2q Ă Γ1

n once and its two end points
are on the curve pnµ1 ´ λ1q Ă Γ1

n. See Figure 4. We know this is a positive bypass (c.f. [Li19]).
Attaching a bypass along β yields pY1zNpK1q,Γµq.

Let h11 and h21 be the corresponding 1-handle and 2-handle attached to pY1zNpK1q,Γµq \
pY2zNpK2q,Γ

2
kq. Define

Cµ,k`,µ “ Ch21 ˝ Ch11 .



KNOT SURGERY FORMULAE FOR INSTANTON FLOER HOMOLOGY II: APPLICATIONS 21

nµ1 ´ λ1 kµ2 ´ λ2

β

α

h1

Figure 4. The 1-handle h1, the attaching curve α for the 2-handle h2, and the
bypass arc β.

The commutative diagrams (3.2) and (3.3) are straightforward since the bypass arc and the contact
handles are disjoint from each other. See also [GLW19, Diagram (4.4)] and proof of [GLW19,
Proposition 1.14] for more detailed discussions. The proof of (3.4) is similar to that of [GLW19,
Equation (4.6)]: let α1 be the attaching curve of the 2-handle h21. We can isotope α1 into a suitable
position so that this contact 2-handle attachment correspond to the one in the construction of the
bypass map as in [BS16a].

�

Proof of Proposition 3.4. We only show the proof for d`. The proof for d´ is similar. To construct
the differential d`, we need to use triangles about positive bypass maps in (2.1). Suppose m and n
are large integers. Consider the following diagram.

(3.5)

¨ ¨ ¨ Γ1
n`1 b Γ2

k
oo

Cn`1,k
`,n`k`1

��

ψn`1,1
`,µ bId %%

Γ1
n b Γ2

k

Cn,k
`,n`k

��

ψn,1
`,n`1bId

oo

ψn,1
`,µbId %%

Γ1
n´1 b Γ2

k

Cn´1,k
`,n`k´1

��

ψn´1,1
`,n bId

oo ¨ ¨ ¨oo

¨ ¨ ¨ Γ1
µ b Γ2

k

��

ψµ,1
`,nbId

99

Γ1
µ b Γ2

k

��

ψµ,1
`,n´1bId

99

¨ ¨ ¨

¨ ¨ ¨ Γ#
n`k`1

oo

ψn`k`1,#
`,µ %%

Γ#
n`k

ψn`k,#
`,n`k`1oo

ψn`k,#
`,µ $$

Γ#
n`k´1

ψn`k´1,#
`,n`koo ¨ ¨ ¨oo

¨ ¨ ¨ Γ#
µ

ψµ,#
`,n`k

::

Γ#
µ

ψµ,#
`,n`k´1

99

¨ ¨ ¨

where the vertical maps from Γ1
µ b Γ2

k to Γ#
µ is Cµ,k`,µ in Lemma 3.5.
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By (3.2) and (3.3) in Lemma 3.5, the squares in (3.5) involving vertical maps commute. Hence
the vertical maps induce a morphism C` between unrolled exact couples. This induces a filtered
chain map between B`pK1q b Γ2

k to B`pK1#K2q.
Since k is large, from Corollary 3.3, there is a canonical embedding of KHIp´Y2,K2q “ Γ2

µ into

Γ2
k via the inverse of ψk,2`,µ. By precomposing this embedding, we obtain a filtered chain map between

B`pK1q b Γ2
µ to B`pK1#K2q. Then by (3.4), we know this filtered chain map is an identification

on the first page. This implies that it induces an identification on each page and then the total
filtered chain complex. �

3.2. The formula for null-homologous knots. In this subsection, we combine Proposition 3.4
and the integral surgery formula to obtain rational surgery formulae for null-homologous knots.
First, we do similar calculations as in [OS11, Lemma 7.2].

Lemma 3.6. Suppose K1 Ă Y1 is a null-homologous knot and K2 “ Ov{r Ă Y2 “ Lpv,´rq. Let
pY#,K#q be the connected sum of K1 and K2 and suppose K# is framed by the longitude of K2.
Suppose pµ‚, λ‚q is the meridian and the longitude of K‚ for ‚ P t1, 2,#u. Then

H1pY#zNpK#qq – H1pY1zNpK1qq.

Moreover, the order of K# is v and the intersection number BS# ¨ λ# is ´r, where S# is the Seifert
surface of K#.

Proof. The knot K1 is order 1 and Ov{r is order v. Then

H1pY1zNpK1qq – H1pY1q ‘ Zxµ1y and H1pY2zNpK2qq – Z.

We write g1 “ µ1 and g2 as the generator H1pY2zNpK2qq. Then µ2 “ v ¨ g2 and λ2 “ r ¨ g2. A
calculation on the homology shows

(3.6)

H1pY#zNpK#qq –

ˆ

H1pY1zNpK1qq ‘H1pY2zNpK2qq

˙

{pµ1, µ2q

–

ˆ

H1pY1q ‘ Zxg1, g2y

˙

{pg1 “ v ¨ g2q

– H1pY1q ‘ Zxg#y

– H1pY1zNpK1qq,

where we write g# as the generator. We also write pr as the projection to the summand generated
by g#. Then

prpµ#q “ v ¨ g# and prpλ#q “ r ¨ g#.

Thus, the knot K# is order v and BS# ¨ λ# “ ´r. �

Corollary 3.7. Let K‚ Ă Y‚ for ‚ P t1, 2,#u be defined in Lemma 3.6. Suppose Cn,k
˘,m`k and Cµ,k˘,µ

are defined in Lemma 3.5. Then we have explicit formulae of the grading shifts of the maps as
follows.

(3.7) Cn,k
˘,m`k

ˆ

pΓ1
n, i˘

n´ 1

2
q b pΓ2

k, j ˘
pk ´ 1qv ` r

2
q

˙

Ă pΓ#
n`k`1, iv ` j ˘

pn` k ´ 1qv ` r

2
q.

(3.8) Cµ,k˘,µ

ˆ

pΓ1
µ, iq b pΓ

2
k, j ˘

pk ´ 1qv ` r

2
q

˙

Ă pΓ#
n`k`1, iv ` jq.
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Proof. First, we compute the grading shift of Cµ,k˘,µ. From the homology calculation in Lemma 3.6
and the graded version of (3.1) in [LY21c, Proposition 5.15], we have

(3.9) pΓ#
µ , sq –

à

s1v`s2“s

pΓ1
µ, s1q b pΓ

2
µ, s2q,

where we take the direct sum over s1v`s2 “ s because g# “ v ¨g1 “ g2 under the third isomorphism

in (3.6). From Lemma 2.4, we know the grading shift of the map ψk,2˘,µ is ¯ pk´1qv`r
2 . Then from

(3.4), we know the grading shift of Cµ,k˘,µ is described in (3.8).

Also from Lemma 2.4 and Lemma 3.6, we know the grading shifts of ψn,1˘,µ and ψn`k,#˘,µ are ¯n´1
2

and ¯ pn`k´1qv`r
2 , respectively. From (3.2) and (3.8), the expected grading shifts of Cn,k

˘,m`k is

described in (3.7). Though in general ψn`k,#˘,µ are not injective, we can still obtain (3.7) from the

topological construction of Cn,k
˘,m`k in the proof of Lemma 3.5. The proof is similar to the proof

of [GLW19, Lemma 4.3] and the only difference is that now the knot K2 has order v so that a
(rational) Seifert surface of the connected sum knot K1#K2 is obtained from one Seifert surface of
K2 and p copies of Seifert surfaces of K1 by v many band sums. See Figure 5. �

BS1 BS2BS1 BS2

α

h1

Figure 5. The band sum for the case v “ 2. The two (green) shaded regions are
the two bands.

Then we provide an identification of bent complexes.

Proposition 3.8. Let K‚ Ă Y‚ for ‚ P t1, 2,#u be defined in Lemma 3.6. Then for any grading s,
there is an identification

ApK#, sq “ ApK1, s
1q,

where s1 is the unique grading satisfying

|s´ s1v| ď
v ´ 1

2
.
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Moreover, we have the following commutative diagrams

ApK#, sq
π˘pK#,sq //

“

��

B˘pK#, sq

“

��
ApK1, s

1q
π˘pK1,s

1
q // B˘pK1, s

1q

Proof. From Lemma 3.2, we know pΓ2
µ, s2q is nontrivial only for |s2| ď

v´1
2 , for which the grading

summand is 1-dimensional. Due to the homology result in Lemma 3.6, we can apply the graded
version of (3.1) in (3.9) to show that

pΓ#
µ , sq –

à

s1v`s2“s

pΓ1
µ, s1q b pΓ

2
µ, s2q – pΓ

1
µ, s

1q.

Moreover, we have
à

kě0

pΓ#
µ , s` kvq –

à

kě0

pΓ1
µ, s

1 ` kq.

Note that two sides of the isomorphism are underlying spaces of subcomplexes of B`pK#q and
B`pK1q since the orders of K# and K1 are v and 1, respectively. From Proposition 3.4, the
differentials d` on both sides are the same under the isomorphism. Similarly, we have

à

kď0

pΓ#
µ , s` kvq –

à

kď0

pΓ1
µ, s

1 ` kq,

and the differentials d´ on both sides are the same. Hence we conclude the identification about the
bent complex (c.f. Definition 2.15). The commutative diagrams follow immediately. �

Theorem 3.9. Suppose K Ă Y is a null-homologous knot. Suppose u{v P Qzt0u. For any grading
s, let s1 and s2 be the unique gradings satisfying

|s´ s1v| ď
v ´ 1

2
and |s` u´ s2v| ď

v ´ 1

2
.

Then there exists a grading preserving isomorphism

Ξu{v :
à

sPZ
HpB`ps1qq

–
ÝÑ

à

sPZ
HpB´ps2qq

so that

I7p´Y´u{vpKqq – H

ˆ

Conepπ´ ` Ξu{v ˝ π
` :

à

sPZ
HpAps1qq Ñ

à

sPZ
HpB´ps1qqq

˙

.

Proof. The statement is an analog of the rational surgery formula for yHF in [OS11, Section 7.1],

where π´ and Ξu{v ˝ π
` are analogs of v̂ and ĥ. Let m “ tu{vu and u{v “ m` r{v. Following the

strategy at the start of this section, set K1 “ K and K2 “ Ov{r to be a core knot in a lens space.
Then Yu{vpKq is obtained by m-surgery on K# “ K1#K2. From Theorem 2.16, we know there
exists a grading preserving isomorphism

Ξ#
m :

à

sPZ
HpB`pK#, sqq

–
ÝÑ

à

sPZ
HpB´pK#, s`mp´ qqq
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so that

I7p´Y´u{vpKqq – H

ˆ

Conepπ´,# ` Ξ#
m ˝ π

`,# :
à

sPZ
HpApK#, sqq Ñ

à

sPZ
HpB´pK#, sqqq

˙

.

Note that pp, qq “ pv,´rq so mp´ q “ u.
From Proposition 3.8, we replace complexes of K# by complexes of K1 to obtained the rational

surgery formula, where Ξu{v is induced by Ξ#
m under the identification. �

Remark 3.10. The rational surgery formula for a rationally null-homologous knot is more complicated
but still doable. In such case, the graded version of Künneth formula is not enough and we need
a torsion spinc-like decomposition for sutured instanton homology (c.f. [LY21a], Remark 1.4, and
Remark 1.6).

4. The 0-surgery for knots in the 3-sphere

In this section, we deal with 0-surgery for knots inside S3. Recall we have

π`m,k “ Ψm`k
`,m`2k´1 ˝ ψ

2m`2k´1
2

´,m`k : Γ 2m`2k´1
2

Ñ Γm`2k´1,

π´m,k “ Ψm`k
´,m`2k´1 ˝ ψ

2m`2k´1
2

`,m`k : Γ 2m`2k´1
2

Ñ Γm`2k´1,

and π˘,im,k be the restriction of π˘m,k on pΓ 2m`2k´1
2

, iq. For knots inside S3, we have a better description

of the maps π˘,im,k than in Lemma 2.21.

Lemma 4.1. Suppose K Ă S3 is a knot. Let τ “ τIpKq be defined in Definition 2.26. For any
fixed integer m and large enough integer k, we have the following.

(1) When i ą τ , π`,im,k “ 0. When i ă ´τ , π´,im,k “ 0.

(2) When i ă τ , π`,im,k ‰ 0. When i ą ´τ , π´,im,k ‰ 0.

(3) When i ď ´gpKq, π`,im,k is an isomorphism. When i ě gpKq, π´,im,k is an ismorphism.

Proof. For part (1), we only prove the statement regarding π`m,k. The statement regarding π´m,k
follows from the symmetry between K and ´K, where ´K is the orientation reversal of K. Note
when we switch the orientation of the knot, the tau invariant remains the same, π˘ switches with
each other, and the grading induced by the Seifert surface becomes the additive inverse. Let

ψ
2m`2k´1

2 ,i

´,m`k “ ψ
2m`2k´1

2

´,m`k |pΓ 2m`2k´1
2

,iq.

We know that

π`,im,k “ Ψm`2k´1
`,m`k ˝ ψ

2m`2k´1
2 ,i

´,m`k .

From Lemma 2.8 we know

Impψ
2m`2k´1

2 ,i

´,m`k q Ă pΓm`k, i`
m` k ´ 1

2
q.

When k is large enough so that m` k is large, the map Ψm`k
`,m`2k´1 corresponds to the composition

of pk ´ 1q many U -actions as in the construction of KHI´ in Definition 2.25. By the definition of τ
in Definition 2.26, we immediately conclude that

Ψm`k
`,m`2k´1|pΓm`k,jq “ 0
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whenever j ą τ ` m`k´1
2 . Hence as a result we have

π`,im,k “ 0

when i ą τ .
For part (2), again we only prove the statement involving π`m,k. By the definition of τ , and the

correspondence between Ψm`k
`,m`2k´1 and Uk´1 on KHI´, we know that when k is large enough,

there exists

x P pΓm`k´τ`i, τ `
m` k ´ τ ` i´ 1

2
q

so that

Ψm`k´τ`i
`,m`2k´1pxq ‰ 0.

Take

y “ Ψm`k´τ`i
`,m`k pxq P pΓm`k, iq,

we know that

Ψm`k
`,m`2kpyq “ Ψm`k´τ`i

`,m`2k´1pxq ‰ 0.

So it remains to show that y P Impψ
2m`2k´1

2 ,i

´,m`k q. Indeed, from the construction of y we know that

ψm`k`,µ pyq “ 0.

Then from Lemma 2.9, we know that

ψm`k
´,m`k´1pyq “ ψµ

´,m`k ˝ ψ
m`k
`,µ pyq “ 0.

Hence by Lemma 2.8 we have

y P kerpψm`k
´,m`k´1q “ Impψ

2m`2k´1
2 ,i

´,m`k q.

Part (3) is a restatement of Lemma 2.21, part (3). �

Next we study the 0-surgery for knots inside S3. The main obstruction to apply the proof of the
integral surgery formula in [LY22b, Section 3.2] to the 0-surgery is that π`m,k and π´m,k have the
same grading shift. Then

HpConepc1π
`
m,k ` c2π

´
m,kqq

may depend on the scalars. If either map vanishes, then the homology is still independent of the
scalars. However, this is not true in general. Fortunately, we can make use of the Z-grading on
I7pS3

0pKqq in (1.1). Note that one of the restrictions of π˘m,k on a single grading vanishes.

Theorem 4.2 (0-surgery formula). Suppose K Ă S3 is a knot with τIpKq ď 0. Suppose Apsq, B˘psq
and π˘psq : Apsq Ñ B˘psq are complexes and maps constructed in Definition 2.15. For any s P Zzt0u,
there exists an isomorphism

Ξ0,s : HpB`psqq Ñ HpB´psqq

so that I7p´S3
0pKq, sq is isomorphic to

H

ˆ

Conepπ´psq ` Ξ0,s ˝ π
`psq : HpApsqq Ñ HpB´psqqq

˙

.

If τIpKq ‰ 0, then the same result also applies to s “ 0.
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Proof. From Lemma 2.10, we have a long exact sequence

¨ ¨ ¨ Ñ Γµ
A´1
ÝÝÝÑ Γ´1 Ñ I7p´S3

0pKqq Ñ Γµ Ñ ¨ ¨ ¨

By the same reason in Lemma 2.13, we have

(4.1) A´1 “ c1ψ
µ
`,´1 ` c2ψ

µ
´,´1.

Following the construction of the gradings induced by Seifert surfaces, the maps in the long exact
sequence are all grading preserving. We consider the following octahedral diagram that is used in
[LY22b, Section 3.2].

(4.2) Ym

ψ

''

// Γµ

ψµ`,m´1

`ψµ´,m´1

��

Γm´1
pΨm´1
`,m´1`k,

Ψm´1
´,m´1`kq

''

88

Γ 2m`2k´1
2

φ

""

l1
<<

Γm´1`k ‘ Γm´1`k

Ψm´1`k
´,m´1`2k

´Ψm´1`k
`,m´1`2k

,,

h1

77

Γm´1

Γµ

ψµ`,m´1

`ψµ´,m´1

BB

pψµ
´,m´1`k,

ψµ
`,m´1`kq

33

Γm´1`2k

l

OO

where
h1 “ ψm`k´1

´, 2m`2k´1
2

´ ψm`k´1

`, 2m`2k´1
2

.

When m “ 0, all maps are homogeneous, so we could consider the diagram grading-wise. Note that
we may not know c1 “ c2 “ 1 in (4.1), but we can add scalars to other maps to make diagram still
commute. Following the same strategy in [LY22b, Section 3.2], we obtain for any s P Z,

I7p´S3
0pKq, sq – HpConepc3π

`,i
0,k ` c4π

´,i
0,k qq

for some scalars c3, c4.
When τIpKq ď 0, from Lemma 4.1, we know for any i P Z, either π`,i0,k or π´,i0,k vanishes, and hence

HpConepc3π
`,i
0,k ` c4π

´,i
0,k qq is independent of the scalars. Then we have

I7p´S3
0pKq, sq – HpConepc3π

`,i
0,k ` c4π

´,i
0,k qq

– HpConepπ`,i0,k ` π
´,i
0,k qq

– HpConepπ´psq ` Ξ0,s ˝ π
`psqqq,

where Ξ0,s is constructed similarly to Ξm for m ‰ 0. �

Remark 4.3. From Lemma 2.27 part (2), we may pass to the mirror knot to satisfy the assumption
τI ď 0 in Theorem 4.2.

Baldwin-Sivek also studied framed instanton homology with twisted bundle for 0-surgery, which
is denoted by I7pS3

0pKq, µq, where µ is the meridian of the knot. There is also a Z-grading on this
homology induced by the Seifert surface and we also have a long exact sequence

¨ ¨ ¨ Ñ Γµ
c11ψ``c

1
2ψ´

ÝÝÝÝÝÝÝÝÑ Γ´1 Ñ I7p´S3
0pKq, µq Ñ Γµ Ñ ¨ ¨ ¨
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so that all maps are grading preserving (the coefficients c11 and c12 may be different from c1 and c2).
Thus, we can use the similar octahedral diagram grading-wise to prove the result in Theorem 4.2
when replacing I7p´S3

0pKqq by I7p´S3
0pKq, µq. As a result, we obtain the following corollary. We

also write I7p´S3
0pKq, µ, iq for the grading summand of I7p´S3

0pKq, µq.

Corollary 4.4. Suppose K Ă S3 is a knot. For any s P Zzt0u, we have

I7p´S3
0pKq, sq – I7p´S3

0pKq, µ, sq.

5. Surgeries on Borromean knots

In this section, we study surgeries on the connected sums of Borromean knots.

5.1. The Borromean knot. First, we compute KHI of the Borromean knot. Let T 3 “ S1
1ˆS

1
2ˆS

1
3 .

Let Y be the result of a 0-surgery along S1
1 Ă T 3 with respect to the surface framing induced by

T 2 “ S1
1 ˆ S

1
2 . Note Y “ #2pS1 ˆ S2q. Let K be the core knot of the 0-surgery, which is another

description of the Borromean knot according to [OS04, Section 9]. The knot K bounds a genus-one
Seifert surface S “ S1

2 ˆS
1
3zNpS

1
1q. Let µ Ă BpY zNpKqq be the meridian and λ “ BS Ă BpY zNpKqq

be the longitude.

Lemma 5.1. We have the following

KHIpY,K, iq –

$

’

&

’

%

C |i| “ 1

C2 i “ 0

0 otherwise

Proof. We first figure out KHIpY,Kq “ SHIpY zNpKq,Γµq. Using an annulus to form an auxiliary
surface, we know from [KM10b, Lemma 5.2] that a closure of pY zNpKq,Γµq can be described as
S1 ˆ Σ2 where Σ2 is a closed surface of genus 2, obtained by gluing two once-punctured torus
together. From the proof of [KM10b, Lemma 5.2], there are a pair of simple closed curve α, β Ă Σ2

so that α ¨ β “ 1, the torus S1 ˆ α is the distinguishing surface of the closure, and β serves as the
w2 that specifies the bundle over S1 ˆ Σ2. By construction,

SHIpY zNpKq,Γµq – EigpIβpS1 ˆ Σ2q, µpptq, 2q,

where EigpIβpS1 ˆ Σ2q, µpptq, 2q means the generalized eigenspace of µpptq on IβpS1 ˆ Σ2q with
eigenvalue 2.

On the other hand, take T 2 “ BpY zNpKqq and take the Seifert framing of K on T 2. Let
M “ r0, 1sˆT 2 and let Γµ,µ be the suture on BM which consists of two meridians on each boundary
components of M . We can use an annulus to close up each boundary component of pM,Γµ,µq
separately. A construction similar to that of [KM10b, Lemma 5.2] implies that a closure of pM,Γµ,µq
can be described as S1 ˆ Σ2, and there are two pairs of curves α, β, α1, β1 on Σ2 so that α ¨ β “ 1,
α1 ¨ β1 “ 1, the surface S1 ˆ pαY α1q is the distinguishing surface of the closure, and β Y β1 serves
as the w2. Furthermore, the two pairs pα, βq and pα1, β1q come from closing up two boundary
components of M , so they are disjoint from each other. We know the following

SHIpM,Γµ,µq – EigpIβYβ
1

pS1 ˆ Σ2q, µpptq, 2q.

Since β and βYβ1 both represent primitive homology classes on Σ2, there is an orientation preserving
diffeomorphism h : Σ2 Ñ Σ2 so that Hprβsq “ rβs ` rβ1s. As a result, the map h extends to a
diffeomorphism between closures and we conclude

SHIpY zNpKq,Γµq – SHIpM,Γµ,µq.
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Observe that there is a sutured manifold decomposition

pM,γq
A
 pV, γ6q,

where A “ r0, 1s ˆ µ ĂM is a product annulus and V – S1 ˆD2 is a solid torus with γ6 consists of
six longitudes of V . From [Li19, Proposition 1.4] and [KM10b, Proposition 6.7] we know that

SHIpY zNpKq,Γµq – SHIpM,Γµ,µq – C4.

Now we compute the dimension of each graded part. Since gpKq “ 1, we know KHIpY,K, iq “ 0
for |i| ą 1. For |i| “ 1, since K Ă Y is fibered (the complement is S1 ˆ pT 2zD2q), we have

KHIpY,K, 1q – KHIpY,K,´1q – C.

As a result, we conclude that KHIpY,K, 0q – C2. �

On connected sums of S1 ˆ S2, the circles S1 ˆ tptu induces a nontrivial action on the framed
instanton homology. In particular, we have the following lemma.

Lemma 5.2 ([Sca15, Section 7.8]). Suppose pY is the connected sum of copies of S1 ˆ S2. There is

a canonical action of Λ˚H1ppY q on I7ppY q, making I7ppY q a rank-one free module over Λ˚H1ppY q.

Since Y “ #2S1 ˆ S2, Lemma 5.2 implies

I7pY q “ Λ˚H1pY ;Cq “ Crx1, x2s{px1x2 ` x2x1, x
2
1, x

2
2q “ Cx1, x1, x2, x1x2y.

Note on Y we can pick two circles whose µ-actions correspond to the multiplication of x1 and
x2 on Y “ Λ˚H1p´Y ;Cq. We can pick these two circles away from the Borromean knot K. Since
the µ-action of a circle commutes with all cobordism maps, all µ-actions of surfaces and points,
we know that there is an action of Λ˚H1p´Y ;Cq on pΓ˚, iq for any ˚ P Q Y tµu and any grading
i. This makes pΓ˚, iq a Λ˚H1p´Y ;Cq-module and all bypass maps and surgery maps are module
morphisms. We have the following structure lemma.

Lemma 5.3. Suppose K Ă Y is the Borromean knot. Then for any integer n ě 2, we have an
identification

Γn “ SHIp´Y zNpKq,´Γn, iq “

$

’

’

’

&

’

’

’

%

Cxx1x2y |i| “ n`1
2

Cxx1, x2, x1x2y |i| “ n´1
2

Λ˚H1pY ;Cq |i| ă n´1
2

0 otherwise

Proof. The structure of Γn for large n is understood by Lemma 2.19 so it suffices to work out the
structures of Γ2 and Γ3. By Lemma 2.10 and Lemma 2.4, there are exact triangles

Γ2
H2 // Γ3

F3~~
Y

G2

`` Γ2

ψ2
˘,3 // Γ3

ψ3
˘,µ~~

Γµ

ψµ
˘,2

``

From Lemma 2.19 part (4), we know that F3 is surjective so

dim Γ3 “ dim Γ2 ` dim Y “ dim Γ2 ` 4.
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Since dim Γµ “ 4, we know that the last two exact triangle split as well and in particular, the maps
ψ2
˘,3 are both injective. From Lemma 2.19 part (4), we know that

(5.1) pΓ3, 0q – Y “ Λ˚H1p´Y ;Cq.

Hence from Lemma 5.1, Lemma 2.19 part (2), and Lemma 2.4 we know that

dimpΓ3,˘1q “ dimpΓ2,˘
1

2
q “ dimpΓ3, 0q ´ dimpΓµ,¯1q “ 3.

Similarly,

dimpΓ3,˘2q “ dimpΓ2,˘
3

2
q “ dimpΓ3,˘1q ´ dimpΓµ, 0q “ 1.

Since the isomorphism in (5.1) is induced by a cobordism map, it is an isomorphism between
modules. We have an injective module morphism

ψ2
`,3pΓ2,

1

2
q Ñ pΓ3, 0q.

We have the following claim.
Claim. There is a unique 3-dimensional submodule inside Λ˚H1p´Y ;Cq.

Proof of Claim. Indeed, suppose M Ă Λ˚H1p´Y ;Cq is a 3-dimensional submodule. Assume that
1 ` a P M, where a is spanned by x1, x2, and x1x2. Then note x1x2 “ x1x2p1 ` aq P M. Also
x1p1` aq is of the form x1 ` c ¨ x1x2 for some c P C so we know x1 PM and similarly x2 PM. As
a result 1 PM so M must be all of Λ˚H1p´Y ;Cq. Hence we conclude that M does not have an
element of the form 1` a so the only possibility is that M “ Cxx1, x2, x1x2y. �

From the claim we know that

pΓ3, 1q – pΓ2,
1

2
q – Cxx1, x2, x1x2y.

From the injectivity of the map ψ2
`,3 : pΓ2,

3
2 q Ñ pΓ3, 1q we can conclude similarly that

pΓ3, 2q – pΓ2,
3

2
q – Cxx1x2y.

�

Corollary 5.4. Under the description of Lemma 5.3, the bypass maps between Γn and Γn`1 for
n ě 2 are described as follows.

‚ If i ě 0, the map

ψn˘,n`1 : pΓn,˘iq Ñ pΓn`1, i¯
1

2
q

is the inclusion or the identity if the domain and range are the same.
‚ If i ď 0, the map

ψn˘,n`1 : pΓn,˘iq Ñ pΓn`1, i¯
1

2
q

is the identity.

Moreover, the module structure on Γµ is trivial, i.e., the module multiplication of x1 and x2 are
both zeros.
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Proof. Note all the bypass maps are module morphisms. The description of the bypass maps is
straightforward from the proof of Lemma 5.3. For the module structure of Γµ, we know that
pΓµ, 1q – pΓµ,´1q – C so the structure must be zero. Also from Lemma 2.4 we know

pΓµ, 0q – H

ˆ

ConepCxx1x2y ãÑ Cxx1, x2, x1x2yq

˙

so the module structure on pΓµ, 0q is also trivial. �

Using the integral surgery formula Theorem 2.14 and the dual knot formula in [LY22b, Section
3.4], we can compute I7p´Y´npKqq and Γn for any n P Z (n ‰ 0 for I7). Since we will also deal
with the connected sum of the Borromean knots, we omit the calculation here.

5.2. The connected sums. In this subsection, we compute the surgeries of g copies of connected
sums of K Ă Y . According to [OS08, Section 5.2], these surgeries give rise to nontrivial circle
bundles over Σg. Write

Kg “ #gK Ă Y g “ #gY “ #2gS1 ˆ S2.

Note that the genus of Kg is exactly g. For the rest of this subsection, for ˚ P ZY tµu, write Γ˚ the
suture on Y gzNpKgq and write Γ˚ the corresponding sutured instanton homology. The connected
sum formula (3.1) for instanton knot homology gives rise to the following.

Corollary 5.5. We have the following

dim KHIpY g,Kg, iq “ dimpΓµ, iq “

ˆ

2g

g ` i

˙

.

Moreover, the module structure of Γµ is trivial.

Note from Lemma 5.2 we know that

I7p´Y gq “ Λ˚H1p´Y
g;Cq “ Cxx1, . . . , x2gy{pxixj ` xjxiq.

For any k P r0, 2gs X Z write

(5.2) M2g,k “ SpantΠl
j“1xij | l ě k, 1 ď i1 ă ¨ ¨ ¨ ă il ď 2gu.

Note that

M2g,0 “ Λ˚H1p´Y
g;Cq and M2g,2g – C.

It is straightforward to check that

dimMg,k “

2g
ÿ

j“k

ˆ

2g

k

˙

.

Definition 5.6. Suppose M is a module over Λ˚H1p´Y
g;Cq. We say M is of degree k ą 0 if

any monomial of degree at least k ` 1 annihilates M and there exists a monomial of degree k acts
nontrivially on M. We say M is of degree 0 if the module structure is trivial.

Lemma 5.7. Suppose A, B, and C are three modules over Λ˚H1p´Y
g;Cq so that there is an exact

triangle

A
f // B

g
��

C
h

__
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where the three maps f , g, and h are all module morphisms. Suppose further that A is of degree k
and C is of degree 0, then the degree of B is at most k ` 1.

Proof. Suppose, on the contrary, that B is of degree k ` 2. Assume, without loss of generality, that
there exists b P B so that

ˆ k`2
ź

j“1

xj

˙

¨ b ‰ 0.

Suppose that gpxk`2 ¨ bq ‰ 0. Then xk`2 ¨ gpbq “ gpxk`2 ¨ bq ‰ 0 and this contradicts to the
assumption that C is of degree 0. As a result, there exists a P A so that fpaq “ xk`2 ¨ b. Then we
have

f

ˆ k`1
ź

j“1

xj ¨ a

˙

“

ˆ k`1
ź

j“1

xj

˙

¨ fpaq “

ˆ k`2
ź

j“1

xj

˙

¨ b ‰ 0.

As a result, we have
ˆ k`1
ź

j“1

xj

˙

¨ a ‰ 0,

which contradicts the assumption that A has degree at most k. �

Lemma 5.8. For any g ě 1, and n ě 2g, and any grading i, we have the following.

pΓn, iq –

$

’

&

’

%

M2g,|i|`g´n´1
2

|i| ě n´1
2 ´ g

Λ˚H1p´Y
g;Cq |i| ď n´1

2 ´ g

0 otherwise

Proof. Again we only deal with Γ2g and Γ2g`1. We prove this lemma by three claims. Note from
Lemma 2.19 part (4), we have

pΓ2g`1, 0q – I7p´Y gq – Λ˚H1p´Y
g;Cq.

Also from Lemma 2.19 part (2) we know that pΓ2g, iq – pΓ2g`1, i˘
1
2 q for ˘i ě 0.

Claim 1. For i ą 0, the degree of pΓ2g,˘iq is at most 4g´1
2 ´ i.

Proof of Claim 1. We only deal with pΓ2g, iq. The argument for pΓ2g,´iq is similar. First from
Lemma 2.19 part (2) we know that pΓ2g, iq – pΓ2g`1, i˘

1
2 q then we know from Lemma 2.4 that

there exists an exact triangle

pΓ2g, iq // pΓ2g`1, i´
1
2 q – pΓ2g, i´ 1q

uu
pΓµ, i´

2g`1
2 q

ff

Hence we can apply Lemma 5.7 to carry out an induction from the top grading of Γ2g and

the fact that Γµ has degree 0. The starting point is the top grading 4g´1
2 for which we have

pΓ2g,
4g´1

2 q – pΓµ, gq – C. So clearly it has degree 0. �

Claim 2. For i ą 0, we have the following.

dimpΓn, iq “

4g´1
2 ´i
ÿ

j“0

ˆ

2g

j

˙

.
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Proof of Claim 2. From Lemma 2.19 part (4) we know that F2g`1 is surjective. As a result, we have

dim Γ2g`1 ´ dim Γ2g “ dim Yg “ 22g “ dim Γµ.

Hence the exact triangles

Γn
ψ2g
˘,2g`1 // Γn`1

||
Γµ

``

both split, which means the map ψ2g
˘,2g`1 is injective when restricting to the grading ˘i for i ą 0.

As a result, we can obtain the claim by an induction and applying Corollary 5.5 and the fact

dimpΓ2g,˘
4g ´ 1

2
q “ dimpΓµ,˘gq “ 1 “

ˆ

2g

0

˙

.

�

Claim 3. The module M2g,k is the only submodule of Λ˚H1p´Y
g;Cq that has degree at most

2g ´ k and has dimension
2g
ÿ

j“k

ˆ

2g

k

˙

.

The proof of claim is straightforward. Note there is a sequence of injective maps

pΓ2g, iq ãÑ pΓ2g`1, i´
1

2
q – pΓ2g, i´ 1q ¨ ¨ ¨ ãÑ pΓ2g`1, 0q – Λ˚H1p´Y

g;Cq

Hence the lemma follows from the above three claims. �

From the proof of the above lemma, we also know the following

Corollary 5.9. For any g ě 1, n ě 2g, and grading i, we have the following.

‚ If i ě 0, the map

ψn˘,n`1 : pΓn,˘iq Ñ pΓn`1, i¯
1

2
q

is the inclusion or the identity if the domain and range are the same.
‚ If i ď 0, the map

ψn˘,n`1 : pΓn,˘iq Ñ pΓn`1, i¯
1

2
q

is the identity.

Again, based on Lemma 5.8 and Corollary 5.9 and using the integral surgery formula and the
dual knot formula in [LY22b, Section 3.4], we are able to compute Γn and I7p´Y´npKqq for any
n P Z (n ‰ 0 for I7). Here we only present the computation for I7p´Y´npKqq.

Proof of Theorem 1.1. The manifold Y gm is obtained from Y g “ #2gS1 ˆ S2 by m-surgery on the
connected sum of the Borromean knot Kg. Note as the Borromean knot K Ă #2S1 ˆ S2, we also
know Y gmpK

gq is diffeomorphic to Y g´mpK
gq. So if suffices to compute Y g´mpK

gq for m ą 0.
Since dim Γµ “ dim Yg, we know that all the differentials on the bent complexes are trivial. If

m ě 2g ´ 1, then the argument follows directly from the large surgery formula in Proposition 2.22.
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For smaller m, we can also use the truncation of the integral surgery formula in Proposition 2.22
to make the computation easier. Suppose k is large enough. From Lemma 2.3, Lemma 2.8, and
Lemma 5.8, we know that the following two exact triangles both split.

Γm`k´1
// Γ 2m`2k´1

2

ψ
2m`2k´1

2
˘,m`k

yy
Γm`k

dd

This implies that ψ
2m`2k´1

2

˘,m`k are both surjective. Since

π˘m,k “ Ψm`k
˘,m`2k´1 ˝ ψ

2m`2k´1
2

¯,m`k ,

we have

(5.3) Imπ˘m,k “ Im Ψm`k
˘,m`2k´1.

Note when |j| ď m` g we know that

pΓ 2m`2k´1
2

, jq – C22g

– pΓm`2k´1, jq.

The truncation of the integral surgery formula implies the following.

(5.4) I7p´Y´mpKqq – H

ˆ

ConepπTm,k :
g´1
ÿ

j“1´g

pΓ 2m`2k´1
2

, jq Ñ

g´1´m2
ÿ

j“m2 `1´g

pΓm`2k´1, jqq

˙

where the map

πTm,k “
g´1´m
ÿ

i“1´g

π`,im,k `

g´1
ÿ

i“1´g`m

π´,im,k.

Now we compute the image of the map πT . We discuss in two different cases.
Claim 1. If m “ 2l ´ 1 where 1 ď l ď g ´ 1, we have

ImπTm,k “
g´l
à

j“1

pM`
2g,j ‘M´

2g,jq,

where M˘
2g,j –M2g,j as defined in (5.2) and

M˘
2g,j Ă pΓm`2k´1,˘pg ´ l `

1

2
´ jqq.

Proof of Claim 1. For any m
2 ` 1´ g ď j ď g ´ 1´ m

2 , we have

ImπTm,k X pΓm`2k´1, jq “ Imπ
`,j´m2
m,k Y Imπ

´,j`m2
m,k .

When ˘j ď 0, we have

Imπ
¯,j`m2
m,k Ă Imπ

˘,j´m2
m,k

p5.3q “ Ψn`k
˘,m`2k´1

ˆ

pΓn`k, j ˘
k ´ 1

2
q

˙

“M´|j|`g´m2
.
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As a result, we conclude that

ImπTm,k Ă
g´l
à

j“1

pM`
2g,j ‘M´

2g,jq,

To show that this inclusion is the equality, assume that

b P
g´l
à

j“1

pM`
2g,j ‘M´

2g,jq.

Without loss of generality, we can assume that b PM`
g`m2 ´j

Ă pΓm`2k´1, jq for some j ě 0. We

will prove that b P ImπTm,k. By the argument above, there exists

aj`m2 P pΓ 2m`2k´1
2

, j `
m

2
q

so that

π
´,j`m2
m,k paj`m2 q “ b.

Note

Imπ
`,j`m2
m,k Ă Imπ

´,j` 3m
2

m,k ,

so we can pick

aj` 3m
2
P pΓ 2m`2k´1

2
, j `

3m

2
q

so that

π
´,j` 3m

2

m,k paj` 3m
2
q “ ´π

`,j`m2
m,k paj`m2 q.

We can repeat this argument inductively to obtain an element

a “ aj`m2 ` aj` 3m
2
` aj` 5m

2
` . . .

so that

πTm,kpaq “ b.

�

From Claim 1 and (5.4), we can compute the dimension of I7p´Y´mpKqq as:

dim I7p´Y´mpKqq “
g´1
ÿ

j“1´g

dimpΓ 2m`2k´1
2

, jq `

g´1´m2
ÿ

j“m2 `1´g

dimpΓm`2k´1, jqq

´ 2 ¨ dim ImπTm,k.

“22g ¨m` 4 ¨
g´l
ÿ

j“1

j´1
ÿ

i“0

ˆ

2g

i

˙

.

Claim 2. When m “ 2l for 1 ď l ď g ´ 1, we have

ImπTm,k “M2g,g´l ‘

g´l´1
à

j“1

pM`
2g,j ‘M´

2g,jq,

where M˘
2g,j –M2g,j as defined in (5.2),

M˘
2g,j Ă pΓm`2k´1,˘pg ´ l `

1

2
´ jqq, and M2g,g´l Ă pΓm`2k´1, 0q.
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The proof of Claim 2 is similar to that of Claim 1. As a result we can compute

dim I7p´Y´mpKqq “ 22g ¨m` 4 ¨
g´l´1
ÿ

j“1

j´1
ÿ

i“0

ˆ

2g

i

˙

` 2 ¨
g´l´1
ÿ

i“0

ˆ

2g

i

˙

.

�

5.3. Seifert fibered manifolds. In this subsection, we use the generalized rational surgery in
[OS11, Section 10.2] to obtain the Seifert fibered manifolds by surgeries and then compute the
framed instanton homology.

Following the notations in Section 3 and Section 5.2, we denote the connected sum of g copies
of the Boromean knot by Kg Ă Y g “ #2gS1 ˆ S2 and denote the core knot in Lpv,´rq by Ov{r.
Let K# Ă Y# be the connected sum of K0 :“ Kg and K1 :“ Ov1{r1 , . . . ,Kn :“ Ovn{rn . Then from
[OS11, Section 10.2], the m-surgery on K# gives the Seifert fibered space over a genus g base orbifold
with Seifert invariants pm, r1{v1, . . . , rn{vnq.

Similar to the calculation in Lemma 3.6, we have

H1pY#zNpK#qq –

ˆ

H1pY
gq ‘ xg0, g1, . . . , gny

˙

{pg0 “ vi ¨ gi for i “ 1, . . . , nq

where g0 is the meridian of Kg, gi is the generator of

H1pLpvi,´riqzNpOvi{riqq – Z,

and the meridian of Ovi{ri is vi ¨ gi. Suppose

(5.5) gcdpvi, vjq “ 1 for i ‰ j P t1, . . . , nu.

Let

v “
n
ź

i“1

vi and v1j “
v

vj
“

ź

i‰j

vi.

Suppose gi “ v1i ¨ g
1
i for i “ 1, . . . , n and g0 “ v ¨ g10. Then we have

(5.6)
H1pY

1zNpK 1qq –

ˆ

H1pY
gq
à

Zxg10, g11, ¨ ¨ ¨ , g1ny
˙

{pg10 “ g1i for i “ 1, . . . , nq

– H1pY
gq ‘ Zxg10y.

For ‚ P t0, . . . , n,#u, let Γ‚µ,Γ
‚
n, ψ

n,‚
˘,n`1, ψ

n,‚
˘,µ, ψ

µ,‚
˘,n, and F ‚n denote the sutured instanton ho-

mologies, the bypass maps, the cobordism maps in Lemma 2.10 for K‚. Similar to Proposition 3.8,
we have the following identifications of bent complexes.

Proposition 5.10. Suppose (5.5). For any grading s, there is an identification

ApK#, sq “ ApK0, s0q and B˘pK#, sq “ B˘pK0, s0q,

where s0 is the unique grading satisfying

(5.7) s “ s0v `
n
ÿ

i“1

siv
1
i and |si| ď

vi ´ 1

2
for i “ 1, . . . , n.
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Moreover, we have the following commutative diagrams

ApK#, sq
π˘pK#,sq //

“

��

B˘pK#, sq

“

��
ApK0, s0q

π˘pK0,s0q // B˘pK0, s0q

Proof. From Lemma 3.2, since Ki for i “ 1, . . . , n are core knots in lens spaces, we know pΓiµ, siq is

nontrivial only for |si| ď
vi´1

2 , for which the grading summand is 1-dimensional. We can apply the
graded version of (3.1) in [LY21c, Proposition 5.15] to show that

(5.8) pΓ#
µ , sq –

à

s0v`
řn
i“1 siv

1
i“s

n
â

i“0

pΓiµ, siq,

where the direct sum is again from the homology calculation in (5.6).
For any fixed s, if there are integers ps0, . . . , snq and ps10, . . . , s

1
nq satisfying

s “ s0v `
n
ÿ

i“1

siv
1
i “ s10v `

n
ÿ

i“1

s1iv
1
i.

Then we have

ps0 ´ s
1
0qv `

n
ÿ

i“1

psi ´ s
1
iqv

1
i “ 0.

For any j P t1, . . . , nu, we have v and v1i are divisible by vj for i ‰ j and vj is not divisible by vj .
Hence we must have sj ´ s

1
j is divisible by vj . If

|sj |, |s
1
j | ď

vi ´ 1

2
,

then we must have sj “ s1j . As a conclusion, for fixed s, there is a unique s0 satisfying (5.7). From
(5.8), we have

pΓ#
µ , sq – pΓ

0
µ, s0q.

The remain of the proof is similar to that of Proposition 3.8. Indeed, there are no differentials for
K# and K0, so we do not need to identify differentials in bent complexes.

�

Even though we obtain the identification of the bent complexes as in Proposition 5.10, we still
need to use the Λ˚H1p´Y

g;Cq-action studied in previous two subsections to identify B˘pK#q.

Iterating the construction of Cn,k
˘,n`k in the proof of Lemma 3.5, we can construct maps

(5.9) Ck0,k1,...,kn
˘,k0`k1`¨¨¨`kn

: Γ0
k0 b Γ1

k1 b ¨ ¨ ¨ b Γnkn Ñ Γ#
k0`k1`¨¨¨`kn

.
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Moreover, we have the commutative diagram
(5.10)

Γ0
k0
b Γ1

k1
b ¨ ¨ ¨ b Γnkn

ψ
k0,0

˘,k0`1bId
//

C
k0,k1,...,kn
˘,k0`k1`¨¨¨`kn

��

Γ0
k0`1 b Γ1

k1
b ¨ ¨ ¨ b Γnkn

C
k0`1,k1,...,kn
˘,k0`k1`¨¨¨`kn

��

F 0
k0`1b¨¨¨bF

n
kn //Ân

i“0 I
7p´Yiq

“

��
Γ#
k0`k1`¨¨¨`kn

ψ
k0`k1`¨¨¨`kn,#

˘,k0`1`k1`¨¨¨`kn // Γ#
k0`1`k1`¨¨¨`kn

F#
k0`1`k1`¨¨¨`kn // I7p´Y#q

Since the construction of the map in (5.9) only involves the neighborhoods of the knots, the map
commutes with the Λ˚H1p´Y

g;Cq-action and we regard it as a map between the Λ˚H1p´Y
g;Cq

modules.
Similar to the computation in Corollary 3.7 (c.f. (5.8)), we have

(5.11)

Ck0,k1,...,kn
˘,k0`k1`¨¨¨`kn

ˆ

pΓ0
k0 , s0 ˘

k0 ´ 1

2
q b

n
â

i“1

pΓiki , si ˘
pki ´ 1qvi ` ri

2
q

˙

Ă pΓ#
k0`k1`¨¨¨`kn

, s0v `
n
ÿ

i“1

siv
1
i ˘

p
řn
i“0 ki ´ 1qv `

řn
i“1 v

1
iri

2
q.

Note that the last sum
řn
i“1 v

1
iri comes from the fact that the homology class of the longitude of

K# is the sum of the homology classes ri ¨ gi of the longitudes of Ki for i “ 1, . . . , n under the
isomorphism (5.6).

Proposition 5.11. Suppose (5.5). For any large enough integer l and any grading i, the summand

pΓ#
k , iq is a module Mg,l over Λ˚H1p´Y

g;Cq for some l, as constructed in (5.2). Moreover, the
bypass maps

ψk,#
˘,k`1 : pΓ#

k , iq Ñ pΓ#
k`1, i¯

v

2
q

is either an inclusion of module or the identity.

Proof. From [LY22b, Proposition 3.15], if s ą g ` p´1
2 ´ kp, then we have an isomorphism

HpB`pě sqq – pΓk, s`
pk ´ 1qp´ q

2
q

and if s ą ´pg ` p´1
2 ´ kpq, then we have an isomorphism

HpB´pď sqq – pΓk, s´
pk ´ 1qp´ q

2
q,

where g “ gpK#q “ gpK0q, pp, qq are defined in Subsection 2.2, and B`pě sq, B´pď sq are

subcomplexes of B˘psq. Hence for k large enough, we can compute pΓ#
k , iq by B˘pK#q and Lemma

2.19. Note that pp, qq “ pv,´
řn
i“1 v

1
iriq for K# and pp, qq “ p1, 0q for K0. We only show the

computation for the large grading i and the positive bypass map as follows.
From the identification of B˘ in Proposition 5.10, we know

pΓ#
k , s`

pk ´ 1qv `
řn
i“1 v

1
iri

2
q – HpB`pK#,ě sqq – HpB`pK0,ě s0qq – pΓ

0
k0 , s0 `

k0 ´ 1

2
q,



KNOT SURGERY FORMULAE FOR INSTANTON FLOER HOMOLOGY II: APPLICATIONS 39

where s “ s0v `
řn
i“1 siv

1
i with |si| ď

vi´1
2 and s, s0 satisfy the inequality s, s0 ą g ` p´1

2 ´ kp for
their corresponding pp, qq. Let k “

řn
i“0 ki. From Lemma 3.2, we know

pΓiki , si `
pki ´ 1qvi ` ri

2
q – C.

From (5.11), the map Ck0,k1,...,kn
`,k0`k1`¨¨¨`kn

induces a map from pΓ0
k0
, s0`

k0´1
2 q to pΓ#

k , s`
pk´1qv`

řn
i“1 v

1
iri

2 q.

Since there are no differentials for K0 and K#, the triangles involving ψk0,0
`,k0`1 and ψk0`k1`¨¨¨`kn,#

`,k0`1`k1`¨¨¨`kn
split and these two maps are injective. From Lemma 2.19, after applying the bypass maps for

sufficiently many times k1, the restrictions of maps F 0
k0`k1

and F#
k0`k1`k1`¨¨¨`kn

are isomorphisms.

Then the commutativity in (5.10) implies that

Ck0,k1,...,kn
`,k0`k1`¨¨¨`kn

: pΓ0
k0 , s0 `

k0 ´ 1

2
q Ñ pΓ#

k , s`
pk ´ 1qv `

řn
i“1 v

1
iri

2
q

is an isomorphism. Thus, the proposition follows from the computation in Lemma 5.8, Corollary
5.9, and the commutativity in (5.10). �

Proof of Theorem 1.3. Similar to the proof of Theorem 1.1 in the last subsection, we apply the
integral surgery formula Theorem 2.14 and its truncation Proposition 2.22 to the connected sum
K# of Boromean knots and core knots in lens spaces. Since there are no differentials for K#, again

ψ
2m`2k`1

2

˘,m`k are surjective and

Imπ˘m,k “ Im Ψm`k
˘,m`2k´1.

as in (5.3). Then the dimension of ImπTm,k in the truncation can be computed from Proposition
5.11 and the two claims in the proof of Theorem 1.1.

In Heegaard Floer theory, we apply Ozsváth-Szabó’s integral surgery formula for yHF . There is
an explicit identification between Heegaard Floer version of B˘pK0q in [OS11, Lemma 10.4] (the
lemma is for the plus version, but setting U “ 0 gives the identification for the hat version), which
coincides the identification from the Λ˚H1p´Yg;Cq-module structure.

Since the integral surgery formulae in instanton and Heegaard Floer theories have the similar
form and we already show that the complexes and the maps in the formulae coincide, the dimensions

of I7 and yHF for the surgery manifold are the same. Note that we have to use the dimension over

F2 for yHF since [OS11, Lemma 10.4] works over F2. The computations by two claims in the proof
of Theorem 1.1 are independent of the underlying field. �

6. Surgeries on some alternating knots

In this section, we use oriented skein relation and an inductive argument to study differentials for
a special family of alternating knots in S3.

6.1. Knots with torsion order one. In this subsection, we introduce a condition on the differen-
tials that is closely related to the thin complex in [Pet13, Definition 6]. Inspired by the U map in
Definition 2.25, we have the following definition.

Definition 6.1. Suppose K Ă Y is a rationally null-homologous knot of order p. For a large enough
integer n, and a grading i, we define the map

(6.1) U “ pψn´,n`1q
´1 ˝ ψn`,n`1 : pΓn, iq Ñ pΓn, i´ pq.

Lemma 6.2. The follow are some basic properties of the map U .
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(1) The map U is well-defined for any i ě g ´ pn´1qp´q´1
2 .

(2) For any i so that U is defined, there exists an exact triangle

pΓn, iq
U // pΓn, i´ pq

ψn`,µvv
pΓµ, i´

pn´1qp´q
2 q

ψµ
`,n

gg

(3) We have Fn ˝ U “ Fn.

Proof. Part (1) follows from Lemma 2.19 part (2). Part (2) follows from Lemma 2.4 and Lemma
2.7. Part (3) follows from Lemma 2.11 and Lemma 2.12 Part (1). �

From Lemma 6.2 part (1), the map U is well-defined on most of the gradings of Γn. Since n is
large, it is enough to focus on i ą 0.

From diagram (2.1), the differentials d˘ induce

(6.2) d1,˘ :“ ψn˘,µ ˝ ψ
µ
˘,n

on the first pages of spectral sequences. The definition is independent of the choice of n due to
Lemma 2.7.

Lemma 6.3. Suppose K Ă Y is a rationally null-homologous knot. The following are equivalent.

(i) dimHpΓµ, d1,`q “ dim I7p´Y q.
(ii) dimHpΓµ, d1,´q “ dim I7p´Y q.
(iii) For large enough n and any element x P pΓn, iq with i ą 0, if there exists k P N` so that

Ukpxq “ 0, then Upxq “ 0.
(iv) For large enough n any grading i ą 0, we have

U

ˆ

pΓn, iq X kerFn

˙

“ 0.

Proof. If we reverse the orientation of the knot, then positive and negative bypasses in defining
the differentials d1,˘ in Equation (6.2) exchange with each other. As a result, the two differentials
d1,` and d1,´ also switch with each other. Hence we conclude that (i) and (ii) are equivalent. The
equivalence between (iii) and (iv) follows easily from Lemma 6.2 Part (3). To show that (i) and (iii)
are equivalent, recall that in [LY21c] the construction of the differentials d` goes with a series of
differentials dk,` defined as

dk,` “ ψn`,µ ˝ pΨ
n
`,n`kq

´1 ˝ ψµ`,n.

In [LY21c], we proved that dk,` is well-defined on ker dk´1,`{ Im dk´1,` and

ker dk,`{ Im dk,` – I7p´Y q

for any large enough k. For simplicity, we suppose n is large enough. Since Imψµ`,n lies in the top
few gradings of Γn, by Definition 6.1 the map U is well-defined on related gradings. Also from
Lemma 2.19 we know that ψn´,n`1 is an isomorphism on such gradings, so we can rewrite dk,` as

dk,` “ ψn`,µ ˝ U
´k ˝ ψµ`,n.

Now statement (i) is equivalent to the fact that dk,` “ 0 for all k ě 2 and it remains to show that
this is equivalent to (iii).
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If there exists u P Γµ and k ě 2 so that di,`puq “ 0 for all i ă k and dk,`puq ‰ 0. Then by
definition there exists y P Γn so that ψn`,µpyq ‰ 0 and Uk´1pyq “ ψµ`,npxq ‰ 0. Since by Lemma 6.2

Ukpyq “ U ˝ ψµ`,npxq “ 0

we know that (iii) does not hold. Conversely, if there exists x P Γn so that x R ImU , Ukpxq ‰ 0 and
Uk`1pxq “ 0 for some k ě 1. We know that there exists u P Γµ so that ψµ`,npuq “ Ukpxq and hence

dk`1,`puq “ ψn`,µpxq ‰ 0.

Hence we conclude that (i) and (iii) are equivalent. �

Definition 6.4. A knot K Ă Y has torsion order one if it satisfies any equivalent statement in
Lemma 6.3.

6.2. Commutativity of the first differentials. In this subsection, we prove the commutativity
of two first differentials, which will provide a strong restriction for knots with torsion order one.

Theorem 6.5. For any rationally null-homologous K Ă Y , we have

d1,´ ˝ d1,`
.
“ d1,` ˝ d1,´,

where
.
“ means the equation holds up to a scalar.

From [Li18b], there is a gluing map

G : Γµ b SHIp´r0, 1s ˆ T 2,´Γµ Y´Γµq Ñ Γµ.

Here we can identify t0u ˆ T 2 with BpS3zNpKqq and then use the Seifert framing on BpS3zNpKqq
to be the framing on T 2 as well. Let ξst be the product contact structure on r0, 1s ˆ T 2, and

θpξstq P SHIp´r0, 1s ˆ T 2,´Γµ Y´Γµq

be its contact element [BS16b]. Then we know from [Li18b, Theorem 1.1] that

(6.3) Gp´ b θpξstqq
.
“ Id : Γµ Ñ Γµ.

We write YT 2 “ r0, 1s ˆ T 2 and take n “ 0 in the definition of d1,˘ in (6.2) for simplicity. We can
view the bypasses attached originally to pS3zNpKq,Γµq to be attached to pYT 2 ,Γµ Y Γµq on the
t1u ˆ T 2 side instead, and they lead to new exact triangles

(6.4) SHIp´YT 2 ,´Γµ Y´Γ0q
ψ̂0
˘,1 // SHIp´YT 2 ,´Γµ Y´Γ1q

ψ̂1
˘,µtt

SHIp´YT 2 ,´Γµ Y´Γµq

ψ̂µ
˘,0

jj

Using these bypasses maps, we could construct the map d̂˘ “ ψ̂0
˘,µ ˝ ψ̂

µ
˘,0 just as the construction

of the maps d1,˘. We have the following key proposition:

Proposition 6.6. We have

d̂` ˝ d̂´pθpξstqq
.
“ d̂´ ˝ d̂`pθpξstqq ‰ 0 P SHIp´r0, 1s ˆ T 2,´Γµ Y´Γµq
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Proof of Theorem 6.5 using Proposition 6.6. From the functoriality of gluing maps in [Li18b, Theo-
rem 1.1], we have two commutative diagrams

Γµ b SHIp´YT 2 ,´Γµ Y´Γµq
Idbpd̂`˝d̂´q //

G

��

Γµ b SHIp´YT 2 ,´Γµ Y´Γµq

G

��
Γµ

d1,`˝d1,´ // Γµ

and

Γµ b SHIp´YT 2 ,´Γµ Y´Γµq
Idbpd̂´˝d̂`q //

G

��

Γµ b SHIp´YT 2 ,´Γµ Y´Γµq

G

��
Γµ

d1,´˝d1,` // Γµ

From (6.3), we have Gpxb θpξstqq
.
“ x. Hence, from the commutative diagrams and Proposition 6.6,

we have

(6.5) d1,` ˝ d1,´pxq
.
“ Gpxb d̂` ˝ d̂´pθpξstqqq

.
“ Gpxb d̂´ ˝ d̂`pθpξstqqq “ d1,´ ˝ d1,`pxq.

�

Then we prove Proposition 6.6. First note that d̂` and d̂´ are both constructed via bypasses,
and contact elements are preserved by the gluing maps as in [Li18b, Theorem 1.1]. As a result,
there are two contact structures ξ`´ and ξ´` on pYT 2 ,Γµ Y Γµq, which are both obtained from ξst
by attaching four bypasses according to d1,` ˝ d1,´ and d1,´ ˝ d1,`, respectively, so that

θpξ`´q
.
“ d̂` ˝ d̂´pθpξstqq and θpξ´`q

.
“ d̂´ ˝ d̂`pθpξstqq.

Lemma 6.7. The contact elements θpξ`´q and θpξ´`q are both nonzero.

Proof. From (6.5) we know that for any knot K Ă S3, we have

d1,` ˝ d1,´
.
“ Gp´ b θpξ`´qq and d1,´ ˝ d1,`

.
“ Gp´ b θpξ`´qq.

We computed the differentials for the figure-eight knot in [LY21c, Section 6], for which we have
d1,` ˝ d1,´ ‰ 0 and d1,´ ˝ d1,` ‰ 0. Thus the lemma follows. �

Next, to better study the two contact elements, we construct a Z2-grading on SHIp´YT 2 ,´Γµ Y
´Γµq as follows. View T 2 “ S1 ˆ S1. We call curves that isotopic to S1 ˆ tptu and tptu ˆ S1

longitudes and meridians, respectively. Take a meridian m on T 2, then we have an annulus
Am “ r0, 1s ˆ m Ă YT 2 . We can arrange Am as a product annulus inside pYT 2 ,Γµ Y Γµq. The
decomposition along Am yields a solid torus with suture being six copies of the longitude. According
to [GL19, Lemma 2.29], we have

SHIp´YT 2 ,´Γµ Y´Γµq – C4.

As in [GL19, Theorem 2.28], the surface Am induces a Z-grading on SHIp´YT 2 ,´ΓµY´Γµq so that
all six dimensions are all supported at grading 0.

For a second surface, we pick a longitude of l of T 2 and obtain a second annulus Al “ r0, 1s ˆ l.
Note each component of BAl intersects the suture Γµ twice, so as in [GL19, Theorem 2.28], Al
induces a Z-grading on SHIp´YT 2 ,´Γµ Y´Γµq which is supported at three gradings ´1, 0, 1. The
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decomposition along Al and ´Al both yield a solid torus with sutures being two copies of the
longitude. According to [GL19, Lemma 2.29], we have

SHIp´YT 2 ,´Γµ Y´Γµ, Al, 1q – SHIp´YT 2 ,´Γµ Y´Γµ, Al,´1q – C.

As a result,

SHIp´YT 2 ,´Γµ Y´Γµ, Al, 0q – C2.

From [GL19, Section 5.1], the surfaces Am and Al together induce a Z2-grading.

Lemma 6.8. Suppose pM,γq is a balanced sutured manifold and S ĂM be a properly surface. Let
β Ă BM be a bypass arc, and the bypass attachment along β changes the suture γ to γ1. Let

ψ : SHIp´M,´γq Ñ SHIp´M,´γ1q

be the corresponding bypass map. Then ψ is homogeneous with respect to the grading induced by S
on SHIp´M,´γq and SHIp´M,´γ1q.

Proof. Since β is an arc, we can always perform stabilizations on S in the sense of [Li19, Definition
3.1] to make S disjoint from β. Then as in the proof of [Li19, Proposition 5.5], ψ is clearly
homogeneous. �

Lemma 6.9. Suppose pM,γq is a balanced sutured manifold and S1 and S2 are two admissible
surfaces in the sense of [GL19, Definition 2.26] in pM,γq. Let pi, jq denotes the Z2-grading on
SHIpM,γq induced by the pair of surfaces pS1, S2q. Let

i0 “
1

4
|S1 X γ| ´

1

2
χpS1q, and j0 “

1

4
|S2 X γ| ´

1

2
χpS2q.

Suppose pM1, γ1q is obtained from pM,γq by decomposing along S1, and S12 Ă pM1, γ1q is obtained
from S2 by cutting along S1. Suppose pM2, γ2q is obtained from pM1, γ1q by decomposing along S12.
Then we have an isomorphism

SHIpM,γ, pi0, j0qq – SHIpM2, γ2q.

Proof. By [GL19, Lemma 2.29], we have

SHIpM,γ, S1, i0q – SHIpM1, γ1q.

Applying this fact again, we conclude that

SHIpM,γ, pS1, S2q, pi0, j0qq – SHIpM2, γ2q.

�

Next, we want to study a graded version of exact triangle (6.4). First, we want to figure out the
double grading on SHIp´YT 2 ,´ΓµY´Γ0q and SHIp´YT 2 ,´ΓµY´Γ1q induced by the pair of annuli
pAl, Amq. For the sutured manifold p´YT 2 ,´Γµ Y´Γ0q, Al and Am each intersects the suture at
two points, so we perform a negative stabilization in the sense of [Li19, Definition 3.1] on each
of them to obtain two surfaces A´l and A´m. Then the Z-grading associated to A´l and A´m both
support at grading 0 and 1.

Lemma 6.10. We have

SHIp´YT 2 ,´Γµ Y´Γ0q – C4

and the four generators are supported at bi-gradings p0, 0q, p0, 1q, p1, 0q, and p1, 1q.
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Proof. This is a direct application of Lemma 6.9 by looking at the four pair of surfaces p´Al,´Amq,
´Al, Am, pAl,´Amq, pAl, Amq. Note when dealing with ´Al and ´Am, we need to use a positive
stabilization instead, and use the grading shifting property in [GL19, Theorem 1.12] to relate the
grading induced by A˘l and A˘m. �

For the sutured manifold p´YT 2 ,´Γµ Y´Γ1q, the annulus Al intersects the suture four times, so
it induces a Z-grading where all non-vanishing gradings are ´1, 0, 1. The annulus Am intersects the
suture twice, so we perform a negative stabilization as above and use A´m to construct a Z-grading
on SHIp´YT 2 ,´Γµ Y´Γ1q. The non-vanishing gradings are 0 and 1.

Lemma 6.11. We have

SHIp´YT 2 ,´Γµ Y´Γ1q – C4

and the four generators are supported at bi-gradings p0,´1q, p0, 0q, p1, 0q, and p1, 1q.

Proof. This is a direct application of Lemma 6.9 by looking at the four pair of surfaces p´Al,´Amq,
´Al, Am, pAl,´Amq, pAl, Amq. Note when dealing with ´Am, we need to use a positive stabilization
instead, and use the grading shifting property in [GL19, Theorem 1.12] to relate the grading induced
by A`m and A´m. �

Proof of Proposition 6.6. By Lemma 6.8, there is a graded version of (6.4) as follows.

(6.6) SHIp´YT 2 ,´Γµ Y´Γ0, pi
1
0, j

1
0qq

ψ̂
0,pi10,j

1
0q

`,1 // SHIp´YT 2 ,´Γµ Y´Γ1, pi
1
1, j

1
1qq

ψ̂
1,pi11,j

1
1q

`,µ
ss

SHIp´YT 2 ,´Γµ Y´Γµ, p0, 0qq

ψ̂
µ,p0,0q
`,0

OO

for some indices pi10, j
1
0q and pi11, j

1
1q. From above argument, we know that

SHIp´YT 2 ,´Γµ Y´Γµ, p0, 0qq – C2.

From Lemma 6.10, we know that

dim SHIp´YT 2 ,´Γµ Y´Γ0, pi
1
0, j

1
0qq ď 1.

From Lemma 6.11, we know that

dim SHIp´YT 2 ,´Γµ Y´Γ1, pi
1
1, j

1
1qq ď 1.

Since the three terms fit into an exact triangle as in (6.6), we must have

dim SHIp´YT 2 ,´Γµ Y´Γ0, pi
1
0, j

1
0qq “ 1

and the map ψ̂
µ,p0,0q
˘,0 is surjective. Since we already have the nonvanishing result in Lemma 6.7, to

show that

θpξ`´q
.
“ θpξ´`q,

it suffices to prove that

ψ̂µ`,0pθpξ`´qq “ ψ̂µ`,0pθpξ´`qq “ 0.

For the contact structure ξ´`, the image ψ̂µ`,0pθpξ´`qq “ 0 because after attaching the last bypass
to ξ´`, the resulting contact structure admits a Giroux torsion so has vanishing contact element by
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[LY21c, Section 4]. For the contact structure ξ`´, note we have

ψ̂µ`,0pθpξ´`qq “ ψ̂µ`,0 ˝ d̂` ˝ d̂´pθpξstqq

“ ψ̂µ`,0 ˝ pψ̂
1
`,µ ˝ ψ̂

µ
`,1q ˝ pψ̂

1
´,µ ˝ ψ̂

µ
´,1qpθpξstqq

“ 0

It is finally zero since ψ̂µ`,0 and ψ̂1
`,µ fit into an exact triangle. �

6.3. Classification of complexes. Suppose K Ă S3 is a knot of torsion order one (c.f. Definition
6.4). From Lemma 6.3, we know d˘ “ d1,˘, i.e. differentials on higher pages vanish. Then Theorem
6.5 imposes strong restrictions on the differentials. In this subsection, we prove a classification
theorem for complexes of knots of torsion order one.

Lemma 6.12. Suppose K Ă S3 is a knot with torsion order one and

dim Γµ “ ||∆Kptq||,

where || ¨ || is the sum of absolute values of coefficients. Write d˘ “ d1,˘ for simplicity. Then up
to changing a basis, the pair pΓµ, d` ` d´q is the direct sum of the following three basic types of
complexes, which are called squares for C and staircases for Cl.

c

λ¨d´
��

a
d`oo

d´
��

d b
d`

oo

a1

d´

��
a2 a3

d`

oo

d´

��
¨ ¨ ¨ a2|l|´1d`

oo

d´

��
a2|l| a2|l|`1d`

oo

a2l`1 a2l

d`oo

d´

��
a2l´1 ¨ ¨ ¨

d`oo

d´

��
a3 a2

d`oo

d´

��
a1

C Cl for l ď 0 Cl for l ą 0

where λ is the scalar from Theorem 6.5 to make the diagram in C commute.

Proof. The proof is an adaption of the proof of [Pet13, Lemma 7] to our setup. Note that the proof
in the reference studied spaces with coefficients F2, while we deal with coefficients C here. Theorem
6.5 shows that d` and d´ commute up to a scalar, so pd` ` d´q

2 is not necessarily zero if the scalar
is not ´1. But we can still carry out the proof similarly.

We now treat pΓµ, d`` d´q as a purely algebraic object and prove by induction on the dimension
of Γµ. Fix a basis of pΓµ, iq for each grading i that is homogeneous with respect to the Z2 homological
grading. For a basis element b, we say that there is an upward arrow from an element a to b if

d`paq “ λ ¨ b` plinear combination of other basis elementsq

for some λ ‰ 0. To be consistent with the complex in [Pet13, Lemma 7], we use leftward arrows to
represent upward arrows. In particular, w and z arrows correspond to d` and d´ arrows, respectively.
Note that if b P pΓµ, iq, then a P pΓµ, i ´ 1q since d` “ d1,` shift the Seifert grading by `1. We
define downward arrows using d´ similarly.
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We start with a basis element b1 P pΓµ,´gq, where g “ gpKq. Note that ´g is the minimal
nontrivial grading of Γµ.

Case 1. There is a downward arrow from a to b for some a P pΓµ,´g ` 1q, i.e., we have

d´paq “
n
ÿ

i“1

λi ¨ bi

for some basis elements b2, ¨ ¨ ¨ bn (possibly n “ 1). We change the basis by replacing tb1, ¨ ¨ ¨ , bnu
with tb “

řn
i“1 λi ¨ bi, b2, ¨ ¨ ¨ , bnu. Then d´paq “ b. Since b lives in the minimal nontrivial grading,

there is no downward arrow originating at b and no upward arrow pointing to b. If there are other
basis element with downward arrow to b, add a to each of them with a proper coefficient, so that in
the new basis only a has a downward arrow to b. If there is an upward arrow from b1 to a for some
b1 P pΓµ,´gq, then d´ ˝ d`pb

1q must have nonzero coefficient on b, which contradicts the fact that
d` ˝ d`pb

1q “ 0 and the commutivity from Theorem 6.5. Hence there is no upward arrow pointing
to a.

Case 1.1. We have d`pbq ‰ 0. We will split off a C summand and hence the induction applies.
Indeed, let d “ d`pbq ‰ 0 and c “ d`paq. From Theorem 6.5, we have

d´pcq “ d´ ˝ d`paq
.
“ d` ˝ d´paq “ d`pbq “ d ‰ 0.

Then Case 1.1 in the proof of [Pet13, Lemma 7] applies verbatim and we can change the basis to
make the following conditions hold:

(1) c and d are basis elements;
(2) b is the only basis element with an upward arrow to d;
(3) c is the only basis element with a downward arrow to d;
(4) a is the only basis element with an upward arrow c;
(5) a is the only basis element with a downward arrow to b.

Hence the span of a, b, c, d is a C summand.
Case 1.2. We have d`pbq “ 0. The grading of b guarantees that b R Im d` so

rbs ‰ 0 P HpΓµ, d`q – I7p´S3q – C.

As a result, there is no other generators of HpΓµ, d`q. In particular, c “ d`paq ‰ 0 since we have
already argued that there is no upward arrow to a. Now d´pcq “ d` ˝d´pbq “ 0 by grading argument
and d`pcq “ 0 since d2

` “ 0. As in the proof of [Pet13, Lemma 7], we can change the basis so that c
is a basis element and a is the only basis element with an upward arrow to c.

Case 1.2.1. There is no downward arrow to c. In this case we can split off the staircase spanned
by a, b, and c.

Case 1.2.2. There is a downward arrow to c. As in the proof of [Pet13, Lemma 7], after a
suitable change of basis, either we eliminate the arrow to c so that we can split off a staircase
spanned by a, b, and c, or we can find d so that d´pdq “ c and d is the only basis element with
a downward arrow to c, and we can repeat the argument in Case 1.2 to further trace along the
staircase.

Case 2. There is no downward arrow to b. We will split off a staircase. If d`pbq “ 0 we split off
the single b. If c “ d`pbq ‰ 0 we can change the basis to make c a basis element and b is the only
basis element with an upward arrow to c. As above also know that d`pcq “ 0 and d´pcq “ 0. Note
now rbs is the unique generator of HpΓµ, d´q so we know that there exists d with d´pdq “ c. As in
the proof of [Pet13, Lemma 7] we can keep this argument to split off a staircase starting from b.

In any case we can split off either a square or a staircase hence the induction applies. �
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Corollary 6.13. Suppose K Ă S3 is a knot with torsion order one and

dim Γµ “ ||∆Kptq||.

Then the structure of pΓµ, d` ` d´q is determined by ∆Kptq and τIpKq.

Proof. The proof of [Pet13, Theorem 4] applies verbatim. In particular, there is a unique staircase
Cl with l “ τIpKq, i.e.,

a1 P pΓµ,´τIpKqq and a2|l|`1 P pΓµ, τIpKqq.

The remaining squares can then be fixed by ∆Kptq. �

Corollary 6.14. Suppose K Ă S3 is a knot so that K has torsion order one and

dim Γµ “ ||∆Kptq||.

Suppose further that τIpKq “ τpKq “ τ . Then for any r “ p{q P Qzt0u with q ě 1, we have

dim I7pS3
r pKqq “ dimF2

yHF pS3
r pKqq “

$

’

&

’

%

p||∆Kptq|| ` 2|τ | ´ 3q ¨ q{2` |p´ q ¨ p2|τ | ´ 1q| τ ą 0

p||∆Kptq|| ` 2|τ | ´ 3q ¨ q{2` | ´ p´ q ¨ p2|τ | ´ 1q| τ ă 0

p||∆Kptq|| ´ 1q ¨ q{2` |p| τ “ 0.

Proof. Since τIpKq “ τpKq, we know from Lemma 6.13 and [Pet13, Theorem 1.4] that the differen-
tials in instanton and Heegaard Floer theory have exactly the same structure. Explicitly, there is
one staircase Cτ and k squares for

k “
||∆Kptq|| ´ 2|τ | ´ 1

4
.

Despite of the difference in coefficients, we can apply the large surgery formulae in [OS04] and
[LY21c] to obtain

dim I7pS3
˘npKqq “ dimF2

yHF pS3
˘npKqq

for any large enough n. Explicitly, we have the following.

(1) A square C contributes two-dimensional subspaces for both p˘nq-surgeries
(2) A staircase Cl with l ă 0 contributes a n-dimensional subspace for p´nq-surgery and a pn`4|l|´2q-

dimensional subspace for `n-surgery.
(3) A staircase C0 contributes a n-dimensional subspace for both p˘nq-surgeries.
(4) A staircase Cl with l ą 0 contributes a pn` 4l ´ 2q-dimensional subspace for p´nq-surgery and

a n-dimensional subspace for `n-surgery.

Note that a figure-eight has one square and a staircase C0 and the torus knot T p2, 2l ` 1q has
a staircase Cl and no square. Then the corollary follows from the dimension formulae in [BS21,
Theorem 1.1] and [Han20, Proposition 15] for instanton and Heegaard Floer theory. �

6.4. Induction using oriented skein relation. In this subsection, we study differentials for a
family of knots Kpa1, . . . , a2n`1q, where a1, . . . , a2n`1 are the numbers of full-twists as in Figure 6.

Proposition 6.15. Suppose K “ Kpa1, . . . , a2n`1q with ai ě 0. Let

k “ #ti | ai ě 1u.

If k ď n` 1, then we have the following.

(1) τIpKq “ gpKq “ n.
(2) K has torsion order one (c.f. Definition 6.4).
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a1 a2 a2n`1

δ

ai “ 1

Figure 6. The knot Kpa1, . . . , a2n`1q.

Proof of Theorem 1.5. When ai ą 0 for all i we know that K is an alternating knot. It follows
from [BS21, Corollary 1.8] and [GLW19, Theorem 1.2] that τIpKq “ τpKq for all alternating knots.
Moreover, by the spectral sequence in [KM11a], we know dim Γµ “ ||∆Kptq||. Then Proposition
6.15 and Corollary 6.14 apply. �

We start by some preparation lemmas. Suppose K` Ă S3 is a knot and δ is a curve circling
around a crossing of K` as in Figure 7. Write K´ Ă S3

´1pδq – S3 and K0 Ă S3
0pδq – S1 ˆ S2. We

can discuss the tau invariant for the knot K0 Ă S1 ˆ S2 once we fix an element in I7p´S1 ˆ S2q.
For any ˚ P QY tµu, write

Γ˘˚ “ SHIp´S3zNpK˘q,´Γ˚q and Γ0
˚ “ SHIp´S1 ˆ S2zNpK0q,´Γ˚q

The bypass maps are written as ψ‚,n1
˘,n2

for ‚ P t`,´, 0u. The maps F ‚n , G‚n from surgeries along a
meridian of K` are defined similarly. For simplicity, we will write d‚1 for d‚1,`.

δ

K` K´

0

K0

Figure 7. The knots K`, K´ and K0.

Since dim I7p´S1 ˆ S2q “ 2, we have two effective tau-invariants for the knot K0. To specify
choices, first note that there is a surgery exact triangle associated to δ:

(6.7) I7p´S3q
Hδ // I7p´S3q

Fδww
I7p´S1 ˆ S2q

Gδ

gg
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Pick α1 ‰ 0 P ImFδ then we can define

τα1
pK0q “ maxti | D x P pΓ0

n, iq s.t. F
0
npxq “ α1u ´

n´ 1

2
.

Note ImFδ is 1-dimensional, so it does matter what scalar to put on α1. We pick

α2 P I
7p´S1 ˆ S2qz ImFδ

so that the value

τα2
pK0q “ maxti | D x P pΓ0

n, iq s.t. F
0
npxq “ α2u ´

n´ 1

2

takes the maximal value among all possible α2.

Lemma 6.16. For the knots K`, K´, and K0, suppose the following.

(i) dim Γ`µ “ dim Γ´µ ` dim Γ0
µ.

(ii) τIpK´q “ τα2
pK0q ´ 1.

(iii) The knots K´ and K0 both have torsion order one.

Then K` has torsion order one.

Proof. The surgery triangle with respect to δ gives rise to an exact triangle

Γ´µ
Hδ,µ // Γ`µ

Fδ,µ��
Γ0
µ

Gδ,µ

__

Condition (i) implies that Gδ,µ “ 0. Since the surgery maps associated to δ commutes with the
differentials d‚1 on Γ‚µ, we have a short exact sequence of chain complexes:

0 Ñ pΓ´µ , d
´
1 q Ñ pΓ´µ , d

´
1 q Ñ pΓ´µ , d

´
1 q Ñ 0.

The Zigzag lemma gives rise to an exact triangle

(6.8) HpΓ´µ , d
´
1 q

Hδ,µ,˚ // HpΓ`µ , d
`
1 q

Fδ,µ,˚xx
HpΓ0

µ, d
0
1q

B˚

ff

From condition (iii) we know that HpΓ´µ , d
´
1 q – C and HpΓ0

µ, d
0
1q – C2. So in order to prove the

lemma, it is suffice to show that B˚ ‰ 0. To do this, let β2 “ Gδpα2q ‰ 0 P I7p´S3q. Pick n large

enough and x´ P pΓ´n , τIpK´qq so that F´n px
´q “ β. Take u´ “ ψ´,n`,`,µpx

´q. It is straightforward

to check that d´1 pu
´q “ 0 and u´ R Im d´1 . Then HpΓ´µ , d

´
1 q is generated by ru´s.
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Pick x0
2 P pΓ

0
n, τα2pK

0qq so that F 0
npx

0
2q “ α2. We have the following diagrams where the triangles

are exact and parallelograms are commutative.

(6.9) Γ´n
Hδ,n //

ψ´,n
`,`,µ

��

Γ`n

Fδ,n
xx

ψ`,n
`,`,µ

��

Γ0
n

Gδ,n

ff

ψ0,n
`,`,µ

��

Γ´µ
Hδ,µ // Γ`µ

Fδ,µ
xx

Γ0
µ

Gδ,µ

ff

Γ´n
Hδ,n // Γ`n

Fδ,n
xx

Γ0
n

Gδ,n

ff

Γ´µ
Hδ,µ //

ψ´,µ
`,`,n

OO

Γ`µ

Fδ,µ
xx

ψ`,µ
`,`,n

OO

Γ0
µ

Gδ,µ

ff ψ0,µ
`,`,n

OO

Claim. We have Gδ,npx
0
2q “ Upx´q.

Proof of Claim. Suppose not, i.e., y “ Gδ,npx
0
2q ´ Ux

´ ‰ 0. Note

F´n pyq “ F´n ˝Gδ,npx
0
2q ´ F

´
n ˝ Upx

´q “ Gδpαq ´Gδpαq “ 0.

Hence the fact that K´ has torsion order one implies that y R ImU . As a result,

v “ ψ´,n`,µpyq “ ψ´,n`,µ ˝Gδ,npx
0q ‰ 0.

From the commutativity we know

Gδ,µ ˝ ψ
0,n
`,`,µpx

0
2q ‰ 0

which contradicts the fact that Gδ,µ “ 0 implied by Condition (i). �

Now since Ux´ “ Gδ,npx
0
2q, we know from the commutativity that

U ˝Hδ,npx
´q “ Hδ,n ˝ Upx

´q “ 0.

Then there exists u` P Γ`µ so that Hδ,npx
´q “ ψ`,n`,µpu

`q. Take u0 “ Fδ,µpu
`q, we know from the

commutativity that

ψ0,n
`,µpu

0q “ Fδ,n ˝ ψ
`,n
`,µpu

`q “ 0.

As a result, d0
1pu

0q “ 0. Also, we know

d`1 pu
`q “ ψ`,n`,µ ˝ ψ

`,µ
`,npu

`q

“ ψ`,n`,µ ˝Hδ,npx
´q

“ Hδ,µ ˝ ψ
´,n
`,µpx

´q

“ Hδ,µpu
´q.

By the construction of B˚, we conclude that B˚pru
0sq “ ru´s and we conclude the proof of the

lemma.
�

Lemma 6.17. For the knots K`, K´, and K0, suppose we have the following.

(i) All three knots K´, K0 and K` have torsion order one.
(ii) Either dim Γ`µ “ dim Γ´µ ` dim Γ0

µ, or dim Γ0
µ “ dim Γ´µ ` dim Γ`µ .



KNOT SURGERY FORMULAE FOR INSTANTON FLOER HOMOLOGY II: APPLICATIONS 51

Then τα1pK0q “ τIpK`q.

Proof. From Condition (ii) and the zigzag lemma there exist an exact triangle

(6.10) HpΓ´µ , d
´
1 q

// HpΓ`µ , d
`
1 q

Fδ,µ,˚xx
HpΓ0

µ, d
0
1q

ff

Condition (i) implies that HpΓ`µ , d
`
1 q – C and Fδ,µ,˚ ‰ 0. Take β1 P I

7p´S3q so that Fδpβ1q “ α1.

Take x` P pΓ`n , τIpK`qq so that F`n px
`q “ β1. We know from the commutativity that

F 0
n ˝ Fδ,npβ1q “ Fδ ˝ F

`
n px

`q “ α1.

Hence by the definition of τ we know τα1
pK0q ě τIpK`q. Suppose τα1

pK0q “ τIpK`q ` k for some

k ą 0. Now take v` “ ψ`,n`,µpx
`q. We know that d`1 pv

`q “ 0 and v` R Im d`1 . So HpΓ`µ , d
`
1 q – C is

generated by rv`s. Let v0 “ Fδ,µpv
`q, we know that Fδ,µ,˚prv

`sq “ rv0s.
Pick x0

1 P pΓ
0
n, τα1

pK0qq so that F 0
npx

0
2q “ α1, then we know that

F 0
n

ˆ

Fδ,npx
`q ´ Ukpx0

1q

˙

“ α1 ´ α1 “ 0.

Since K0 has torsion order one as in Condition (i), we know that

U

ˆ

Fδ,npx
`q ´ Ukpx0

1q

˙

“ 0.

As a result, there exists w` P Γ0
µ so that Fδ,npx

`q ´ Ukpx0
1q “ ψ`,µ`,npw

0q. As a result, we know that

v0 “ Fδ,µpv
`q

“ ψ0,n
`,µ ˝ Fδ,npx

`q

“ ψ0,n
`,µ

ˆ

Fδ,npx
`q ´ Ukpx0

1q

˙

“ ψ0,n
`,µψ

`,µ
`,npw

0q

“ d0
1pw

0q.

As a result, we know that Fδ,µ,˚prv
`sq “ rv0s “ 0, which contradicts the fact that Fδ,µ,˚ fits into

the exact triangle (6.10) and the fact that Fδ,µ,˚ ‰ 0. �

Lemma 6.18. For the knots K`, K´, and K0, suppose we have the following.

(i) The knots K´ and K` both have torsion order one.
(ii) We have dim Γ0

µ “ dim Γ´µ ` dim Γ`µ

Then we have the following.

(1) K0 has torsion order one.
(2) We have τα2pK0q “ τIpK´q.
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Proof. From Condition (ii) and the Zigzag lemma, we have an exact triangle

(6.11) HpΓ´µ , d
´
1 q

// HpΓ`µ , d
`
1 q

Fδ,µ,˚xx
HpΓ0

µ, d
0
1q

Gδ,µ,˚

ff

From Condition (i) we know HpΓ`µ , d
`
1 q – HpΓ`µ , d

`
1 q – C so dimHpΓ0

µ, d
0
1q ď 2. On the other

hand, we know dimHpΓ0
µ, d

0
1q ě dim I7p´S1 ˆ S2q “ 2. As a result, we know dimHpΓ0

µ, d
0
1q “ 2

which implies that K0 has torsion order one, Fδ,µ,˚ ‰ 0, and Gδ,µ,˚ ‰ 0.
Note all hypothesis of Lemma 6.17 are satisfied so the argument in the proof of that lemma applies.

In particular, we know τα1
pK0q “ τIpK`q. We can pick x` P pΓ`n , τIpK

`qq so that F`n px
`q “ β1,

and take

x0
1 “ Fδ,npx

`q, v0
1 “ ψ0,n

`,µpx
0
1q, and v` “ ψ0,n

`,µpx
`q.

We know from the proof of Lemma 6.17 that Fδ,µ,˚prv
`sq “ rv0

1s ‰ 0.

Pick x0
2 P pΓ

0
n, τα2

pKqq so that F 0
npx

0
2q “ α2 and take v0

2 “ ψ0,n
`,µpx

0
2q. It is straightforward to

check that d0
1pv

0
2q “ 0 and v0

2 R Im d0
1.

Claim. The homology HpΓ0
µ, d

0
1q is generated by rv0

1s and rv0
2s.

Proof of Claim. When v0
1 and v0

2 have different gradings in Γ0
µ, the claim follows immediately from

the fact that dimHpΓ0
µ, d

0
1q “ 2. When v0

1 and v0
2 have the same grading, which means x0

1 and x0
2

have the same grading in Γ0
n and hence τα1

pK0q “ τα2
pK0q. In this case, suppose that there exists

complex numbers c1, c2, not both zero, and an element w0 P Γ0
µ so that

c1 ¨ v
0
1 ` c2 ¨ v

0
2 ` d

0
1pw

0q “ 0.

Take y0 “ ψ0,µ
`,npw

0q, then the above equality is equivalent to

ψ0,n
`,µpc1 ¨ x

0
1 ` c2 ¨ x

0
2 ` y

0q “ 0,

which implies that there exists z0 P pΓ0
n, τα1

pK0q ` 1 “ τα2
pK0q ` 1q so that

c1 ¨ x
0
1 ` c2 ¨ x

0
2 ` y

0 ` Uz0 “ 0.

From the construction we know Uy0 “ 0 hence F 0
npy

0q “ 0. Since the grading of z0 is strictly larger
than both τα1pK0q and τα2pK0q, the choice of α1 and α2 implies that F 0

npzq “ 0. As a result we
have

c1 ¨ α1 ` c2 ¨ α2 “ F 0
npc1 ¨ x

0
1 ` c2 ¨ x

0
2 ` y

0 ` Uz0q “ 0.

Thus we must have c1 “ c2 “ 0 and hence rv0
1s and rv0

2s are linearly independent. �

With the help of the above claim, the proof that τα2pK0q “ τIpK´q is similar to the proof of
Lemma 6.17. �

Proof of Proposition 6.15. We use induction on k to prove the following.

(i) The knot K has genus gpKq “ n.
(ii) The coefficient of the term ti in ∆Kptq has sign p´1qn´i.
(iii) The knot has torsion order one.
(iv) We have τIpKq “ n.
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When k “ 0, the knot is the torus knot T p2, 2n ` 1q, so all the above four statements hold.
Suppose we have proved the above four statements for k. Now we deal with the case k` 1. Without
loss of generality, we can assume that a2n`1 ą 1 while a2n “ 1. Write

Kl “ Kpa1, a2, a3, . . . , a2n, lq.

We know K “ Ka2n`1
. Note K´1 “ Kpa1, a2, . . . , a2n´1q and K1 “ Kpa1, . . . , a2n “ 1, 1q, so

inductive hypothesis applies to both K´1 and K1. Let δ be a curve circling around the crossing
corresponding to a2n`1 as shown in Figure 6. Then we can take K` “ K1, K´ “ K´1 and there is
a corresponding K0 Ă S1 ˆ S2. From [KM10a] we know that

χgrpΓ
˘
µ q “ ´∆K˘ptq and χgrpΓ

`
µ q ´ χgrpΓ

´
µ q “ χgrpΓ

0
µq.

Also, since K˘1 are both alternating knots, we know that

dim Γ˘µ “ ||χgrpΓ
˘
µ q||,

where || ¨ || means the sum of the absolute values of coefficients. Statements (i) and (ii) applied to
K˘1 then implies that

dim Γ0
µ ě ||χgrpΓ

0
µq||

“ ||χgrpΓ
`
µ q ´ χgrpΓ

`
µ q||

“ ||χgrpΓ
`
µ q|| ` ||χgrpΓ

`
µ q||

“ dim Γ`µ ` dim Γ´µ

Then it follows from the exact triangle

Γ´µ
Hδ,µ // Γ`µ

Fδ,µ��
Γ0
µ

Gδ,µ

__

that dim Γ0
µ “ dim Γ`µ ` dim Γ´µ . Then we can apply Lemma 6.17 and Lemma 6.18 to conclude that

K0 has torsion order one, and τα1pK0q “ τα2pK0q ` 1 “ g.
Now for any odd l ą 0, we can take K` “ Kl, K´ “ Kl´2, and take K0 to be the same knot as

the one for K1 and K´1. Hence we can apply Lemma 6.3 to inductively conclude all four statements.
In the statement of Proposition 6.15, we require that k ď n` 1. This extra assumption is because

our strategy is to cancel two crossings when a2n “ 1 and a2n`1 “ ´1. In particular, in the proof
we need a2n “ 1 through out the induction so that we have enough information to start with to
understand larger a2n`1. This means at the very beginning we need at least half of ai to be 1. �

7. Twisted Whitehead doubles and splicings

The techniques in Section 6.4 can also be used to study twisted Whitehead doubles.

Definition 7.1. Suppose pV Ă S3 is an unknotted solid torus. Let pK Ă pV be the knot as in Figure

8. Let µ̂ be a non-separating curve on BpV bounding a disk in pV and λ̂ be a non-separating curve on

BpV bounding a disk in S3zpV . Let J be a knot in S3 and V a tubular neighborhood of J . Let µ and
λ be the meridian and Seifert longitude of J , respectively. Let

f : pV ãÑ S3
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be an embedding so that fppV q “ V , fpµ̂q “ µ and fpλ̂q “ λ. Let K “ fp pKq. Then K is called the
positively clasped t-twist Whitehead double of J , denoted by D`t pJq.

pKpV

t
t “ 1

Figure 8. Whitehead double.

Remark 7.2. We can also study the negatively clasped Whitehead doubles. Note they are the mirror
of positively clasped Whitehead doubles as in [Hed07].

Here are some basic properties of K.

Lemma 7.3 ([Hed07]). Suppose K is the positively clasped t-twist Whitehead double of J . Then we
have the following.

(1) The genus of K is one.
(2) ∆KpT q “ ´t ¨ T ` p2t` 1q ´ t ¨ T´1.

Since the Whitehead doubles all have genus 1, there are only three nontrivial gradings of its KHI
to study. Note the top and bottom gradings are isomorphic to each other. The following lemma
describe the top (and hence the bottom) grading.

Lemma 7.4. Suppose K is the positively clasped t-twist Whitehead double of J . Then

KHIpS3,K, 1q – SHIpS3zNpJq,Γ´tq.

Proof. A genus-one Seifert surface S of K can be drawn as in Figure 9 (Inside pV ). From the proof
of [KM11b, Proposition 7.16], we know that there is an isomorphism

KHIpS3,K, 1q – SHIpS3zr´1, 1s ˆ S, t0u ˆ BSq.

As shown in Figure 9, the sutured manifold pS3zr´1, 1s ˆ S, t0u ˆ BSq admits a product disk D and
it is straightforward to check that there is a sutured manifold decomposition

pS3zr´1, 1s ˆ S, t0u ˆ BSq
D
 pS3zNpJq,Γ´tq.

Note we can fix the suture as Γ´t by counting its intersections with µ and λ explicitly. Hence we
conclude that

KHIpS3,K, 1q – SHIpS3zr´1, 1s ˆ S, t0u ˆ BSq

– SHIpS3zNpJq,Γ´tq.

�

Now we compute the tau invariants for the twisted Whitehead doubles.
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pK

t

α

Figure 9. A genus-one Seifert surface S of pK. Two sides of the Seifert surface
are shaded in red and green. The blue curve α is curve on S bounding a disk

in pV zS. This disk can be viewed as a product disk in the sutured manifold
pS3zr´1, 1s ˆ S, t0u ˆ BSq.

Lemma 7.5. Suppose K is the positively clasped t-twist Whitehead double of J . Then

τIpKq “

#

1 t ă 2 ¨ τIpJq

0 t ě 2 ¨ τIpJq

Proof. Write pK`t ,Γnq “ SHIp´S3pK`t q,´Γnq, and pK`t ,Γn, iq “ SHIp´S3pK`t q,´Γn, iq. We take
the surgery exact triangle along the curve δ. The maps in the surgery triangle associated to δ
commutes with the 2-handle attachments along the meridian of the knots, so we have the following
diagram, for which the triangles are exact and the parallelograms are commutative.

(7.1) pD`t`1pJq,Γnq
Hδ,n //

Ft`1,n

��

pD`t pJq,Γnq

Fδ,nuu
Ft,n

��

pK`,Γnq

Gδ,n

ii

Fˆ,n

��

I7p´S3q
Hδ // I7p´S3q

Fδuu
I7p´S1 ˆ S2q

Gδ

jj

Note the above diagram works for any n P Z, but we fix a large enough n P Z. Here K` Ă S1 ˆ S2

is obtained from D`t pJq by performing a 0-surgery along δ. Note gpK`q “ 1. Also, the knots
D`t pJq depends on the companion knot J , yet due to the 3-dimensional light bulb theorem we
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know that K` is independent of the companion knot J . As a result, we can assume J “ U is the
unknot to obtain information of J . When J “ U , we know D`0 pUq is the unknot and D`´1pUq is the
right-handed trefoil. As a result, we know from Lemma 6.17 and Lemma 6.18 that

τα1
pK`q “ 1, and τα2

pK`q “ 0.

Note we also know from [GLW19, Section 6] that

pD`0 pUq,Γn, 1q “ 0 and pD`´1pUq,Γn, 1q – C.

As a result, we know from the exactness that pK`,Γn, 1q – C. Also, from Lemma 2.28 part (2), we
know

(7.2) dimpJ,Γnq “ dimpJ,Γ´2¨τIpJqq ` |n` 2 ¨ τIpJq|.

As a result, when t ă 2τIpJq, we know from Lemma 7.4 and Lemma 2.4 that

dimpD`t`1pJq,Γn, 1q “ dimpD`t`1pJq,Γµ, 1q “ dimpD`t pJq,Γµ, 1q ´ 1 “ dimpD`t pJq,Γn, 1q ´ 1.

Hence Fδ,n restricted to pD`t pJq,Γn, 1q is nontrivial. Since τα1pK
`q “ 1 (c.f. Section 6.2) and Fδ is

injective, we know that

Ft,n|pD`t`1pJq,Γn,1q
‰ 0

which implies that τIpD
`
t`1pJqq “ 1.

When t ě 2τIpJq, we know similarly that

dimpD`t`1pJq,Γn, 1q “ dimpD`t pJq,Γn, 1q ` 1,

so Fδ,n restricted to pD`t pJq,Γn, 1q is trivial and the injectivity of Fδ implies that

Ft,n|pD`t`1pJq,Γn,1q
“ 0

which means τIpD
`
t`1pJqq ă 1. To further settle down the τI , we can look at the mirrors of such

knots. Taking the mirror corresponding to reversing the orientation of the 3-manifold so we have a
different diagram

(7.3) pD`t pJq,Γnq
ĎHδ,n //

sFt,n

��

pD`t`1pJq,Γnq

sFδ,nuu
sFt`1,n

��

p sK`,Γnq

sGδ,n

ii

sFˆ,n

��

I7p´S3q
Hδ // I7p´S3q

Fδtt
I7p´S1 ˆ S2q

Gδ

ii

As above, we can use the case J “ U and t “ ´1 to compute that

τα1
pK`q “ 0, and τα2

pK`q “ ´1.

As a result we have sFˆ,n ˝ sFδ,n is trivial and the injectivity of sFδ implies that

sFt,n|
pD`t`1pJq,Γn,1q

“ 0,



KNOT SURGERY FORMULAE FOR INSTANTON FLOER HOMOLOGY II: APPLICATIONS 57

which means τIpD
`
t`1pJqq ă 1 for any t P Z. In particular, for t ě 2 ¨ τIpJq, we must have

τIpD
`
t`1pJqq “ 0. �

Remark 7.6. Lemma 7.5 answers [BS21, Question 1.25] affirmatively.

Proof of Theorem 1.7. Part (1) and part (2) are Lemma 7.4 and Lemma 7.5. Part (3) follows from
Lemma 7.3, Lemma 7.5, and Corollary 8.4. �

Proof of Theorem 1.9. Let K be the positively clasped 0-twist Whitehead double of J . Let L Ă BpV

be a meridian of pV as in Figure 10. The knot S3
´ 1
n

pKq can be viewed as the splicing of the complements

of the knot J Ă S3 and the knot L Ă S3
´ 1
n

p pKq. It is well-known that the two components of the

Whitehead link can be swapped so S3
´ 1
n

p pKq is still S3, while the knot L Ă S3
´ 1
n

p pKq becomes the

knot Kn. Theorem 1.7 part (3) applies to compute the p˘1q-surgeries of the knot K. Then we can
apply [BS21, Theorem 1.1] after knowing p˘1q-surgeries. �

pK L˘1

L pK

˘1

Figure 10. The two components of a Whitehead double link can be swapped.

8. Almost L-space knots

In this section, we study almost L-space knots; see (1.2) for the definition. We adopt the following
notations from [LY21c, Definition 5.2]: Let K Ă S3 be a knot (so that pp, qq “ p1, 0qq. Define

Tn,i “ pΓn, i`
n´ 1

2
q and Bn,i “ pΓn, i´

n´ 1

2
q.

By Lemma 2.19 part (2), we know that when n ě 2gpKq ` 1,

Tn,i – Tn`1,i and Bn,i – Bn`1,i.

We can rewrite the bypass exact triangles in Lemma 2.8 using Tn,i and Bn,i as follows.

Lemma 8.1. Adopting the notations as above, we have the following two bypass exact triangles:

pΓ 2n´1
2
, iq

ψ
2n´1

2
`,n // Tn,i

ψn`,n´1{{
Bn´1,i´1

ψn´1

`, 2n´1
2

ff
pΓ 2n´1

2
, iq

ψ
2n´1

2
´,n // Bn,i

ψn´,n´1{{
Tn´1,i`1

ψn´1

´, 2n´1
2

ee
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Furthermore, we have the following.

(1) ([LY22a, Theorem 1.12] or from the large surgery formula) When n ě 2gpKq ` 1, we have

I7p´S3
´npKqq –

à

|i|ďgpKq

pΓ 2n´1
2
, iq ‘ Cn´2g´1.

(2) ([LY21c, Proposition 5.5]) We have

ψn´1
`,n´2 ˝ ψ

n
´,n´1 “ ψn´1

´,n´2 ˝ ψ
n
`,n´1 “ 0.

Theorem 8.2. Suppose K Ă S3 is an almost L-space knot. Then we have the following.

(1) If gpKq ě 2, then dim KHIpS3,K, iq ď 1 for any i P Z such that |i| ą 1. Furthermore, the
knot K is fibered and strongly quasi-positive.

(2) If gpKq “ 1, then either K is the figure-eight or τIpKq “ 1 and

KHIpS3,K, iq –

$

’

&

’

%

0 |i| ą 1

C2 |i| “ 1

C or C3 i “ 0

(3) If gpKq “ 2, then

KHIpS3,K, iq –

$

’

’

’

&

’

’

’

%

0 |i| ą 2

C |i| “ 2

C or C2 |i| “ 1

C or C3 i “ 0

Proof. Suppose n P N` so that dim I7pS3
npKqq “ n. From [BS21, Section 2.2], we have the following

exact triangle

I7pS3
npKqq // I7pS3

n`1pKqq

xx
I7pS3q

ee

From the fact that I7pS3q – C, we know either dim I7pS3
n`1pKqq “ n`1, which implies that K is an

instanton L-space knot and hence a contradiction, or dim I7pS3
n`1pKqq “ n` 3. Hence, by induction

we can assume that n ě 2g` 1. Suppose sK is the mirror of K. We have I7p´S3
´np

sKqq – I7pS3
npKqq.

From now on, all sutured instanton homologies are for the mirror knot. Applying Lemma 8.1, we
know that

à

|i|ďg

pΓ 2n´1
2
, iq – C2g`3.

From Lemma 2.28 part (1), we know that

pΓ 2n´1
2
, iq – pΓ 2n´1

2
,´iq.

From [LY21b, Proposition 1.21], we know that

χpdimpΓ 2n´1
2
, iqq “ χpI7p´S3qq “ 1.

As a result, we conclude that

pΓ 2n´1
2
, iq – C when 0 ă |i| ď g and pΓ 2n´1

2
, 0q – C3.



KNOT SURGERY FORMULAE FOR INSTANTON FLOER HOMOLOGY II: APPLICATIONS 59

When gpKq ě 2, the argument for fact that dim KHIp´S3, sK, iq ď 1 in the proof of [LY21c,
Theorem 5.14] applies verbatim for |i| ą 1. In particular, for i “ g, we can apply [LY21c, Lemma
5.7] (with m “ g) to conclude that (for the knot sK) Bn,g´1 “ 0. By Lemma 2.28 part (1), we know
that

pΓn, 1´ g `
n´ 1

2
q – pΓn, g ´ 1´

n´ 1

2
q “ Bn,g´1 “ 0.

From [Li19, Section 5], we know that

KHIp´S3, sK, 1´ gq – pΓn, 1´ g `
n´ 1

2
q “ 0,

which, implies that τIp sKq “ ´g as in Definition 2.26. By Lemma 2.27, we know τIpKq “ g.
From [KM11b, Proposition 7.16] and [KM10a, Proposition 4.1], the fact that

dim KHIp´S3, sK, gpKqq ď 1

implies K is fibered. The fibration gives rise to a partial open book decomposition and hence a
contact structure ξ on S3. Note K is strongly quasi-positive if and only if ξ is tight on S3. We can
perturb K so that K is Lengendrian in pS3, ξq and, furthermore, the knot complement S3zNpKq is
obtained by removing a standard tight contact neighborhood of K from S3. Let ξ1 be the restriction
of ξ on S3zNpKq. Hence BpS3zNpKqq is convex with dividing set described by the suture Γm for
some integer m P Z. We can perform suitable stabilizations to make m ě 2gpKq ` 1. In [BS16a],
Baldwin-Sivek defined a contact invariant θpξ1q P Γm. By the proof of [BS22c, Theorem 1.17] and
(the conclusion of) [BS22c, Theorem 1.18], we know that

θpξ1q ‰ 0 P pΓm, gq – C.

We can attach a contact 2-handle along the meridian of K to pS3,Γmq so that the sutured manifold
becomes S3p1q, which is a 3-ball with a connected simple closed curve as the suture. After gluing,
the contact structure ξ1 on pS3zNpKq,Γmq becomes the restriction of ξ on S3p1q. So by [BS16a,
Theorem 1.2], we have

Fmpθpξ
1qq “ θpξ|S3p1qq P SHIp´S3p1qq “ I7p´S3q.

where Fm is the map associated to the contact 2-handle attachment. Note by [GLW19, Proposition
3.17] and the fact that τIpKq “ g, we know that

θpξ|S3p1qq ‰ 0

which implies that ξ is tight on S3 by [BS16a, Theorem 1.3]. Hence we conclude that K is strongly
quasi-positive.

To prove the arguments when gpKq ď 2, we need to un-package the proof of [LY21c, Lemma 5.7
and Lemma 5.8]. First, assume gpKq “ 1. From above discussions, we can pick n ě 6 and have

pΓ 2n´1
2
, iq – pΓ 2n´3

2
, iq – pΓ 2n´5

2
, iq –

#

C |i| “ 1

C3 i “ 0.

From Lemma 2.4 and the definition of Tn, we know that

Tn,1 “ pΓn, 1`
n´ 1

2
q – KHIp´S3, sK, 1q.
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Assume Tn,1 – KHIp´S3, sK, 1q – Ck. Lemma 8.1 leads to the following diagram where the vertical
and horizontal sequences are exact:

pΓ 2n´1
2
, 1q – C

��
Tn,1 – Ck

ψn,1
´,n´1

��
pΓ 2n´3

2
, 0q – C3

ψ2n´3,0
`,n´1 // Bn´1,0

ψn´1,0
`,n´2 // Tn´2,1 – Ck

where the second superscript of the bypass map indicates the grading. Note since pΓ 2n´1
2
, 1q – C,

the map ψn,1´,n´1 is either injective or surjective.

Genus 1, case 1 ψn,1´,n´1 is surjective. Then by the exactness Bn´1,0 – Ck´1. From Lemma 8.1

part (3), we know that ψn´1,0
`,n´2 “ 0 so from the exactness we know that 3 “ k ´ 1` k, which means

k “ 2. Thus, we know that KHIp´S3, sK,˘1q – Ck “ C2. Applying Lemma 2.4, we know that

dim KHIp´S3, sK, 0q ď dimpΓn, 1`
n´ 1

2
q ` dimpΓn´1, 0`

n´ 2

2
q.

From the definitions of Tn,i and Bn,i and Lemma 2.28, we know that

dimpΓn, 1`
n´ 1

2
q “ dimTn,1 “ k “ 2, and

dimpΓn´1, 0`
n´ 2

2
q “ dimpΓn´1,´

n´ 2

2
q “ dimBn´1,0 “ k ´ 1 “ 1.

Hence dim KHIp´S3, sK, 0q ď 3. From the Euler characteristic result in [KM10a, Theorem 1.1], we
know that dim KHIp´S3, sK, 0q is odd, so it must be either 1 or 3.

It remains to show that τIpKq “ 1 for all such knots. By [Li19, Section 5], if n ě 3 then

KHIp´S3, sK, 0q – pΓn, 0`
n´ 1

2
q – Ck´1pΓn,´1`

n´ 1

2
q – C.

Note the last isomorphism follows from Lemma 2.19. Also, there is an exact triangle by Lemma 6.2
part (2).

KHIp´S3, sK, 0q
U // KHIp´S3, sK,´1q

uu
KHIp´S3, sK,´1q – C2

ii

Hence we know

U |KHIp´S3,ĎK,0q “ 0.

and hence by the definition of τI and Lemma 2.27 we know τIpKq “ ´τIp sKq “ 1.
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Genus 1, case 2 ψn,1´,n´1 is injective. Then by the exactness Bn´1,0 – Ck`1. Lemma 8.1 implies
another exact triangle

pΓ 2n´5
2
, 1q – C

��
Bn´1,0 – Ck`1

ψn´1,0
`,n´2 // Tn´2,1 – Ck

ψn´2,1
´,n´3

��

// pΓ 2n´3
2
, 0q – C3

Bn´3,0 – Ck`1

The vertical exactness implies that ψn´2,1
´,n´3 is injective and hence from Lemma 8.1 part (3), we know

that ψn´1,0
`,n´2 is zero. Hence from the horizontal exactness we know k`1`k “ 3, which means k “ 1.

From [KM10a, Proposition 4.1] we know K is fibered. It is well-known that there are only two
genus-one fibered knots in S3, namely the trefoil and the figure-eight, among which the trefoil is an
L-space knot. Hence K is the figure-eight.

Finally we study the case of gpKq “ 2. First, as in the proof of part (1), since KHIp´S3, sK, 2q ‰ 0,
we can apply [LY21c, Lemma 5.7] directly with m “ 2 and conclude that for n ě 9, we have
KHIp´S3, sK, 2q – Tn,2 – C and Bn´1,1 “ 0. Note we have

pΓn`1,´1`
n´ 1

2
q – Bn`1,1 – Bn´1,1 “ 0.

and hence from Lemma 2.4 and Lemma 2.28 we know

KHIp´S3, sK,´1q “ pΓµ,´1q – pΓn, 0`
n´ 1

2
q – pΓn, 0´

n´ 1

2
q “ Bn,0 – Bn´1,0.

Then the argument above for genus-one almost L-space knots applies verbatim and we can conclude
the following two cases:

Genus 2, case 1 Tn,1 – C and Bn´1,0 – C2.
Genus 2, case 2 Tn,1 – C2 and Bn´1,0 – C. Note in both cases from Lemma 2.4 and Lemma

2.28 we know that

dim KHIp´S3, sK, 0q ď dimpΓn, 1`
n´ 1

2
q ` dimpΓn`1, 0`

n

2
q

“ dimTn,1 ` dimpΓn`1, 0´
n

2
q

“ dimTn,1 ` dimBn`1,0

“ dimTn,1 ` dimBn´1,0

“ 3.

Hence we conclude the proof of part (3). �

Remark 8.3. For genus-two almost L-space knots, we know

dim KHIpS3,K, 2q “ 1 and dim KHIpS3,K, 1q “ 1 or 2.

Recent techniques developed in [BHS21, BLSY21] can show that dim KHIpS3,K, 2q “ 1 implies that
K “ T2,˘5, while the case dim KHIpS3,K, 1q “ 2 is still open.

The techniques in proving the above lemma can also lead to the following.
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Corollary 8.4. Suppose K is a genus-one knot so that I7pS3
1pKqq “ 2d` 1, then either

(1) dim KHIpS3,K, 1q “ d` 1 and τIpKq “ 1, or
(2) dim KHIpS3,K, 1q “ d and τIpKq ď 0.

Proof. Note gpKq “ 1 so by [BS21, Section 1.1 and Theorem 1.1], we know that dim I7pS3
3pKqq “

2d` 3. From Lemma 8.1 we know that if n ě 7,

dim
à

´1ďiď1

pΓ 2n´1
2
, iq “ 2d` 3.

Lemma 8.1 implies a triangle

pΓ 2n´1
2
, 1q // pΓn, 2`

n´1
2 q

vv
pΓn´1, 1´

n´2
2 q

gg

From Lemma 2.19 with Y “ S3, we know that

pΓn, 2`
n´ 1

2
q “ 0 and pΓn´1, 1´

n´ 2

2
q – C

so we conclude that

dimpΓ 2n´1
2
, 1q “ dimpΓ 2n´1

2
,´1q “ 1.

As a result, we have

dimpΓ 2n´1
2
, 0q “ 2d` 1.

The argument in the proof of Theorem 8.2 for the case g “ 1 applies. The original setup
dimpΓ 2n´1

2
, 0q – C3 is the case d “ 1. So as in that proof, we have two cases

Case 1. KHIp´S3, sK, 1q – Tn,1 – Cd`1, Bn´1,0 – Cd, and τIpKq “ 1.
Case 2. KHIp´S3, sK, 1q – Tn,1 – Cd, Bn´1,0 – Cd`1. As in the proof of Theorem 8.2, we know

KHIp´S3, sK, 0q – pΓn´1, 0`
n´ 1

2
q – Bn´1,0 – Cd`1

and

KHIp´S3, sK,´1q – pΓn´1,´1`
n´ 1

2
q – C.

From the exact triangle in Lemma 6.2 part (2)

KHIp´S3, sK, 0q – Cd`1 U // KHIp´S3, sK,´1q – C

tt
KHIp´S3, sK,´1q – Cd

jj

the map U : KHIp´S3, sK, 0q Ñ KHIp´S3, sK,´1q is surjective and hence τIp sKq ě 0 which implies
that τIpKq ď 0. �

Corollary 8.5. Suppose K Ă S3 is a knot with gpKq ě 2. Then

dim I7pS3
1pKqq ě 5.
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Proof. Suppose the contrary, that dim I7pS3
1pKqq ď 3. Then there are two cases: K is either an

instanton L-space knot or an almost L-space knot. If K is an instanton L-space knot we can apply
the main result in [LPCS20] (or [LY21c]) and conclude that dim I7pS3

1pKqq ě 5 directly. If K is
an almost L-space then from Theorem 8.2 and [GLW19, Theorem 1.2], we know that the invariant
ν7pKq in [BS21] satisfies

ν7pKq ě 2τ 7pKq ´ 1 “ 2τIpKq ´ 1 “ 2gpKq ´ 1 ě 3.

Then from [BS21, Theorem 1.1] we know that dim I7pS3
1pKqq ě 5. �

Corollary 8.6. Suppose K “ 15n43522, then we have τIpKq “ 0 and

KHIpS3,K, iq –

$

’

&

’

%

0 |i| ą 1

C2 |i| “ 1

C5 |i| “ 0

Proof. From [BS22b], we know that gpKq “ 1, ∆Kptq “ 2t´3`2t´1, and dimQ {HFKpS3,K, 1q “ 2.
From [LY22c, Corollary 1.4], we know that dim KHIpS3,K, 1q “ 2. From the Euler characterisic
result in [KM10a, Theorem 1.1], we know that dim KHIpS3,K, 1q is either 3 or 5. If it is 3-dimensional,
from [LY21c, Proposition 6.8], we know that either

dim I7pS3
1pKqq “ 3 or dim I7pS3

´1pKqq “ 3.

However this contradicts Corollary 8.5 and the facts that

S3
1pKq – ˘S

3
´1p942q and S3

´1pKq – ˘S
3
´1p820q

as in the proof of [BS22b, Proposition A1]. As a result, we must have

dim KHIpS3,K, 1q “ 5.

�

Proof of Theorem 1.13. We know from [LY22c, BS22b] that up to mirror K must be one in the
following list:

52, D
˘
2 pJq, 15n43522, P p´3, 3, 2n` 1q.

Since K “ 52 is an alternating knot it follows from [KM11a] that

dimKHIpS3,Kq “ ||∆Kptq|| “ 7.

For K “ D`2 pJq or P p´3, 3, 2n` 1q, we know that

∆Kptq “ ´2t` 5´ 2t´1.

From [KM10a, Theorem 1.1] we know that

dimKHIpS3,K, 0q ě 5.

From the proof of [LY21c, Proposition 6.3], we know that

dimKHIpS3,K, 0q ď 5.

As a result, we have

dimKHIpS3,K, 0q “ 5.

For K “ D´2 pJq or 15n43522, we know that

∆Kptq “ 2t´ 3` 2t´1.
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From the above argument we know that

dimKHIpS3,K, 0q “ 3 or 5.

If dimKHIpS3,K, 0q “ 3 then [LY21c, Proposition 6.8] and Corollary 8.4 imply that

τIpKq “ ˘1

which contradicts Corollary 8.6 and Lemma 7.5. �

Proof of Theorem 1.11. Part (1) follows from Theorem 8.2. We prove part (2) as follows. From
Theorem 8.2 part (2), when K is a genus-one almost L-space knot, we have either KHIpS3,K, 1q – C
so that K is the figure eight, or KHIpS3,K, 1q – C2. In the latter case, we know from Theorem
1.13 that K “ 5̄2, is indeed an almost L-space knot again by [LY21c, Theorem 1.20]. �

Proof of Corollary 1.12. If dim I7pS3
1pKqq “ 3, we know that either K is an L-space knot or an

almost L-space knot. From Corollary 8.5 we know that gpKq “ 1. Then the corollary follows from
Theorem 1.11 part (2). �
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