A large surgery formula for instanton Floer homology

Fan Ye

University of Cambridge

Joint work with Zhenkun Li
Basic idea

Knot Floer chain complex $\text{CFK}^\infty \cong \text{Heegaard Floer homology } \widehat{\text{HF}}(S^3_m(K))$.

Instanton knot homology KHI but no differentials \cong calculate $I^\#(S^3_m(K))$?

My work:

1. Construct d_+ and d_- on KHI analogous to d_w and d_z on CFK^∞;
2. Use d_+ and d_- to calculate $I^\#(S^3_m(K))$ for large integer m.

Conjecture (Kronheimer-Mrowka): $\text{KHI}(K) \cong \widehat{\text{HFK}}(K), I^\#(Y) \cong \widehat{\text{HF}}(Y)$.

Fact (Baldwin-Sivek): $\dim I^\#(Y) > |H_1(Y;\mathbb{Z})|$ implies the existence of irreducible $\text{SU}(2)$ representations of $\pi_1(Y)$.
Table of Contents

1. Quick reviews of instanton and Heegaard Floer homology

2. Large surgery formula for Heegaard Floer homology

3. Main theorems

4. Analogous constructions in instanton and Heegaard Floer theory
Suppose Y is a closed 3-manifold and $\omega \to Y$ is a Hermitian line bundle with some admissible conditions. Based on Yang-Mills equations (related to $SO(3)$ connections), Floer ’88 constructed **instanton Floer homology** $I^\omega(Y)$.

Suppose (M, γ) is a balanced sutured manifold, where M is a 3-manifold with boundary and $\gamma \subset \partial M$ is a 1-submanifold with some balanced conditions. Kronheimer-Mrowka ’10 constructed **sutured instanton homology** $SHI(M, \gamma)$.
Suppose Y is a closed 3-manifold. Based on Heegaard diagrams and symplectic geometry, Ozsváth-Szabó ’04 constructed **Heegaard Floer homology** $\widehat{HF}(Y), HF^\infty(Y), HF^+(Y), HF^-(Y)$.

Suppose $K \subset Y$ is a knot. Ozsváth-Szabó ’04 and Rasmussen ’03 constructed **knot Floer homology** $HF^\circ(Y, K)$ for $\circ \in \{\hat{\prime}, \infty, +, -\}$.

Suppose (M, γ) is a balanced sutured manifold. Juhász ’06 constructed **sutured Floer homology** $SFH(M, \gamma)$.
Special balanced sutured manifolds

<table>
<thead>
<tr>
<th>Setup</th>
<th>Manifold</th>
<th>Suture</th>
<th>Heegaard Floer</th>
<th>instanton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutured manifold</td>
<td>M</td>
<td>γ</td>
<td>SFH</td>
<td>SHI</td>
</tr>
<tr>
<td>Knot $K \subset Y$</td>
<td>$Y \setminus N(K)$</td>
<td>Two meridians γ_K</td>
<td>\widehat{HFK}</td>
<td>KHI</td>
</tr>
<tr>
<td>Closed 3-manifold Y</td>
<td>$Y \setminus B^3$</td>
<td>Connected curve δ</td>
<td>\widehat{HF}</td>
<td>$I^#$</td>
</tr>
</tbody>
</table>
Conjecture (Kronheimer-Mrowka ’10)

\[\text{SHI}(M, \gamma) \cong \text{SFH}(M, \gamma). \]

In particular, \(\text{KHI}(Y, K) \cong \widehat{\text{HFK}}(Y, K) \) and \(I^\#(Y) \cong \widehat{\text{HF}}(Y) \).

Examples

\(\text{KHI}(Y, K) \cong \widehat{\text{HFK}}(Y, K) \) holds for

- alternating links in \(S^3 \) (Kronheimer-Mrowka ’11)
- all torus knots (Li-Y. ’20 and Baldwin-Li-Y. ’20, some partial results by Lobb-Zentner ’13, Kronheimer-Mrowka ’14, Hedden-Herald-Kirk ’14, Daemi-Scaduto ’19, et al.)
- all \((1,1)\)-L-space knots and all constrained knots in lens spaces (Li-Y. ’21).
Conjecture (Kronheimer-Mrowka ’10)

\[\text{SHI}(M, \gamma) \cong \text{SFH}(M, \gamma). \]

In particular, \(\text{KHI}(Y, K) \cong \widehat{\text{HF}}(Y, K) \) and \(I^\#(Y) \cong \widehat{\text{HF}}(Y). \)

Examples

\(I^\#(Y) \cong \widehat{\text{HF}}(Y) \) holds for

- \(\Sigma_2(S^3, L) \) for any alternating link \(L \) (Scaduto ’15);
- \(S^3_r(K) \) for any knot \(K \) admitting lens space surgeries. (Lidman-Pinzón-Scaduto ’20, Baldwin-Sivek ’20);
- Seifert fibered rational homology spheres (Alfieri-Baldwin-Dai-Sivek ’20);
- Strong Heegaard Floer L-spaces, i.e.
 \[\dim \widehat{\text{HF}}(Y) = \dim \widehat{\text{CF}}(Y) = |H_1(Y; \mathbb{Z})| \] (Baldwin-Li-Y. ’20).
Table of Contents

1 Quick reviews of instanton and Heegaard Floer homology

2 Large surgery formula for Heegaard Floer homology

3 Main theorems

4 Analogous constructions in instanton and Heegaard Floer theory
The hat version of the **bent complex** in Heegaard Floer theory:

For a knot $K \subset S^3$, choose a doubly-pointed Heegaard diagram $(\Sigma, \alpha, \beta, z, w)$. Let $CFK^\infty(Y, K)$ be generated by $[x, i, j] \in \mathbb{T}_\alpha \cap \mathbb{T}_\beta \times \mathbb{Z} \times \mathbb{Z}$ with the Alexander grading $A(x) = j - i$ and let the differential be

$$
\partial[x, i, j] = \sum_{y \in \mathbb{T}_\alpha \cap \mathbb{T}_\beta} \sum_{\phi \in \pi_2(x, y) | \mu(\phi) = 1} \# \widehat{M}(\phi) \cdot [y, i - n_{w}(\phi), j - n_{z}(\phi)].
$$

Let \widehat{A}_s be the subcomplex generated by $[x, i, j]$ with $\max\{i, j - s\} = 0$.

![Diagram of bent complex]

Fan Ye (Cambridge)

Large surgery formula for KHI

2021 10 / 46
Since \((\widehat{CF}(S^3), d_z) = \{i = 0\}\), \((\widehat{CF}(S^3), d_w) = \{j = 0\}\), let \(\hat{A}_s\) be generated by \(x \in \mathbb{T}_\alpha \cap \mathbb{T}_\beta\) and let the differential \(d_s\) be

\[
d_s(x) = \begin{cases}
 d_w(x) & A(x) > s, \\
 d_w(x) + d_z(x) & A(x) = s, \\
 d_z(x) & A(x) < s,
\end{cases}
\]

Fan Ye (Cambridge)
Theorem (large surgery formula, Oszváth-Szabó ’04, Rasmussen ’03)

For integer $m >> 0$ and any integer s with $|s| \leq m/2$, there is an isomorphism

$$\widehat{HF}(S^3_m(K), [s]) \cong H(\hat{A}_s).$$

Here $[s] \in \mathbb{Z}/m$ is the corresponding spinc structure on $S^3_m(K)$.

Remark

The subcomplex A^+_s generated by $[x, i, j]$ with $\max\{i, j - s\} \geq 0$ computes $HF^+(S^3_m(K), [s])$.
Table of Contents

1. Quick reviews of instanton and Heegaard Floer homology
2. Large surgery formula for Heegaard Floer homology
3. Main theorems
4. Analogous constructions in instanton and Heegaard Floer theory
Main theorems

Theorem A (large surgery formula, Li-Y. '21)

There exist differentials d_+ and d_- on $KHI(-S^3, K)$ so that

$$H(KHI(-S^3, K), d_+) \cong H(KHI(-S^3, K), d_-) \cong \mathcal{I}^\#(-S^3).$$

Define $A_s = (KHI(-S^3, K), d_s)$, where $d_s(x) = \begin{cases}
 d_+(x) & A(x) > s, \\
 d_+(x) + d_-(x) & A(x) = s, \\
 d_-(x) & A(x) < s,
\end{cases}$

For $m >> 0$ and any s with $|s| \leq m/2$, there is an isomorphism

$$\mathcal{I}^\#(-S^3_{-m}(K), [-s]) \cong H(A_s).$$

Here $\mathcal{I}^\#(-S^3_{-m}(K)) = \bigoplus_{k=1}^{m} \mathcal{I}^\#(-S^3_{-m}(K), [k])$ is a spinc-like decomposition.

The minus sign comes from contact gluing maps (bypass maps).
Main theorems

Theorem B (Li-Y. ’21)

If $K \subset S^3$ is an \textbf{instanton L-space knot}, then $\dim_{\mathbb{C}} KHI(S^3, K, i) \in \{0, 1\}$, where the $\mathbb{Z}/2$-gradings of the generators of $KHI(S^3, K, i) \cong \mathbb{C}$ are alternating. Hence there exists $k \in \mathbb{N}_+$ and integers $n_k > n_{k-1} > \cdots > n_1 > n_0 = 0$ so that

$$\Delta_K(t) = (-1)^k + \sum_{j=1}^{n_k} (-1)^{k-j} (t^{n_j} + t^{-n_j})$$

(from $\chi(KHI(K)) = \pm \Delta_K(t)$ by Lim ’09, Kronheimer-Mrowka ’10).

Remark

Oszváth-Szabó ’05 proved an analogous result for Heegaard Floer theory. The proof of Theorem B is inspired by their proof.
Main theorems

If K is not an instanton L-space knot, then $\pi_1(S_r^3(K))$ has an irreducible $SU(2)$ representation for

1. all but finitely many slopes $r \in \mathbb{Q}\backslash\{0\}$ (Sivek-Zentner ’20);
2. $r = p/q$ with p a prime power (Baldwin-Sivek ’19).

Corollary A (Li-Y. ’21)

The following knots are not instanton L-space knots.

1. Hyperbolic alternating knots (by Oszváth-Szabó ’05);
2. Montesinos knots (including all pretzel knots), except torus knots $T(2, 2n + 1)$, pretzel knots $P(-2, 3, 2n + 1)$ for $n \in \mathbb{N}_+$ and their mirrors (by Baker-Moore ’18).
3. Knots that are closures of 3-braids, except twisted torus knots $K(3, q; 2, p)$ with $pq > 0$ and their mirrors (by Lee-Vafaee ’21).
Main theorems

Theorem C (Baldwin-Li-Sivek-Y. 21)

For any nontrivial knot $K \subset S^3$, the group of the 3-surgery $\pi_1(S^3_3(K))$ has an irreducible $SU(2)$ representation.

Remark

Kronheimer-Mrowka '04 proved the existence of representation for slope in $[0, 2]$. Baldwin-Sivek '19 proved it for slope 4 and $p/q \in (2, 3)$ with p a prime power. Theorem C is generalized to slope $p/q \in [16/5, 80/23] \cup (4, 5)$ with p an odd prime power and $\gcd(p, 5) = 1$.

Theorem D (Li-Y. in preparation)

For any integer n, $I^\#(S^3_n(K))$ can be calculated by d_+ and d_- on $KHI(-S^3, K)$ analogous to Oszváth-Szabó’s mapping cone formula for $\widehat{HF}(S^3_n(K))$.
Table of Contents

1. Quick reviews of instanton and Heegaard Floer homology

2. Large surgery formula for Heegaard Floer homology

3. Main theorems

4. Analogous constructions in instanton and Heegaard Floer theory
Analogous constructions in instanton and Heegaard Floer theory

<table>
<thead>
<tr>
<th>Construction</th>
<th>Heegaard Floer</th>
<th>Instanton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homology</td>
<td>SFH, HF, HFK, HF</td>
<td>SHI, KHI, IH</td>
</tr>
<tr>
<td>Homological grading</td>
<td>Maslov grading</td>
<td>Relative $\mathbb{Z}/2$-grading</td>
</tr>
<tr>
<td>\mathbb{Z}-grading for surface S (Alexander grading)</td>
<td>$\langle c_1(s), [S]\rangle/2$ for spinc structure s</td>
<td>eigenspaces of $\mu(S')$</td>
</tr>
<tr>
<td>Surgery exact triangle</td>
<td>Oszváth-Szabó '04</td>
<td>Floer '90, Scaduto '15</td>
</tr>
</tbody>
</table>
Proposition A (surgery exact triangle, Floer '90, Scaduto '15)

Suppose K is a knot in the interior of M. Let (M_i, γ_i) be obtained from (M, γ) by Dehn surgery along K with slope μ_i. If

$$\mu_1 \cdot \mu_2 = \mu_2 \cdot \mu_3 = \mu_3 \cdot \mu_1 = -1,$$

then there exists a long exact sequence

$$\text{SHI}(M_1, \gamma_1) \rightarrow \text{SHI}(M_2, \gamma_2) \rightarrow \text{SHI}(M_3, \gamma_3) \rightarrow \text{SHI}(M_1, \gamma_1)$$
Analogous constructions in instanton and Heegaard Floer theory

Let $K \subset S^3$ be a knot and let M be the knot complement. Suppose μ and λ are the meridian and the longitude of K. Let $\Gamma_n \subset \partial M$ be the suture consisting of two curves of slope $-n$ (i.e. $-n\mu + \lambda$). Push μ into $\text{int} M$ to obtain μ', with the framing induced by ∂M.

Proposition A1 (Li-Y. 20)

The $(\infty, 0, 1)$-surgery triangle on $\mu' \subset (-M, -\Gamma_n)$ induces

$$SHI(-M, -\Gamma_{n-1}) \rightarrow SHI(-M, -\Gamma_n) \rightarrow I^#(-S^3) \rightarrow SHI(-M, -\Gamma_{n-1})$$

(Note that $I^#(-S^3) \cong KHI(-S^3, \text{Unknot})$)

In general, let $(\hat{\mu}, \hat{\lambda}) = (\lambda - m\mu, -\mu)$ and let $\hat{\Gamma}_n$ be the suture consisting of two curves of $-n\hat{\mu} + \hat{\lambda}$. Then $(\infty, 0, 1)$-surgery triangle on $\hat{\mu'} \subset (-M, -\hat{\Gamma}_n)$ induces

$$SHI(-M, -\hat{\Gamma}_{n-1}) \rightarrow SHI(-M, -\hat{\Gamma}_n) \rightarrow I^#(-S^3_m(K)) \rightarrow SHI(-M, -\hat{\Gamma}_{n-1})$$
Analogous constructions in instanton and Heegaard Floer theory

<table>
<thead>
<tr>
<th>Construction</th>
<th>Heegaard Floer</th>
<th>Instanton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homology</td>
<td>$SFH, \widehat{HFK}, \widehat{HF}$</td>
<td>$SHI, KHI, I^#$</td>
</tr>
<tr>
<td>Homological grading</td>
<td>Maslov grading</td>
<td>Relative $\mathbb{Z}/2$-grading</td>
</tr>
<tr>
<td>\mathbb{Z}-grading for surface S (Alexander grading)</td>
<td>$\langle c_1(\mathfrak{s}), [S]\rangle/2$ for spinc structure \mathfrak{s}</td>
<td>eigenspaces of $\mu(S)$</td>
</tr>
<tr>
<td>Surgery exact triangle</td>
<td>Oszváth-Szabó '04</td>
<td>Floer '90, Scaduto '15</td>
</tr>
<tr>
<td>Bypass exact triangle</td>
<td>Honda '00, Etnyre-Vela-Vick-Zarev '17</td>
<td>Baldwin-Sivek '18</td>
</tr>
</tbody>
</table>
Proposition B (bypass exact triangle, Baldwin-Sivek ’18)

Suppose $\gamma_1, \gamma_2, \gamma_3$ are three sutures on M such that γ_i are the same except in a disk, where they look like as follows. Then there exists a long exact sequence

$$\text{SHI}(-M, -\gamma_1) \to \text{SHI}(-M, -\gamma_2) \to \text{SHI}(-M, -\gamma_3) \to \text{SHI}(-M, -\gamma_1)$$
Proposition B1 (Li-Y. 20)

Let $M = S^3 \setminus N(K)$ and let Γ_μ and Γ_n be the sutures of slopes μ and $-n\mu + \lambda$. Then there are two bypass exact triangles

$$\xymatrix{ SHI(-M, -\Gamma_{n-1}) \ar[r]^{\psi_{+,n}^{n-1}} & SHI(-M, -\Gamma_n) \ar[r]^{\psi_{+,\mu}^n} & SHI(-M, -\Gamma_\mu) \ar[r]^{\psi_{+,n-1}^\mu} & }$$

Moreover, the bypass maps are homogeneous with respect to the Alexander gradings. Similarly, we can replace $\Gamma_{n-1}, \Gamma_n, \Gamma_\mu$ by $\hat{\Gamma}_{n-1}, \hat{\Gamma}_n, \hat{\Gamma}_\mu$.
Analogous constructions in instanton and Heegaard Floer theory

<table>
<thead>
<tr>
<th>Construction</th>
<th>Heegaard Floer</th>
<th>Instanton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homology</td>
<td>$SFH, \widehat{HF}K, \widehat{HF}$</td>
<td>$SHI, KHI, I^#$</td>
</tr>
<tr>
<td>Homological grading</td>
<td>Maslov grading</td>
<td>Relative $\mathbb{Z}/2$-grading</td>
</tr>
<tr>
<td>\mathbb{Z}-grading for surface S (Alexander grading)</td>
<td>$\langle c_1(s), [S]\rangle/2$ for spinc structure s</td>
<td>eigenspaces of $\mu(S)$</td>
</tr>
<tr>
<td>Surgery exact triangle</td>
<td>Oszváth-Szabó '04</td>
<td>Floer '90, Scaduto '15</td>
</tr>
<tr>
<td>Bypass exact triangle</td>
<td>Honda '00, Etnyre-Vela-Vick-Zarev '17</td>
<td>Baldwin-Sivek '18</td>
</tr>
<tr>
<td>Immersed curve invariants</td>
<td>Hanselman-Rasmussen-Watson '16 '18</td>
<td>???</td>
</tr>
</tbody>
</table>
Suppose M is a 3-manifold with torus boundary. Based on Bordered Floer homology (Lipshitz-Oszváth-Thurston ’08), Hanselman-Rasmussen-Watson ’16 constructed a set of immersed curves in $\partial M \setminus \text{pt}$. It is denoted by $\widehat{HF}(M)$ and can be regarded as an object in some Fukaya category of $\partial M \setminus \text{pt}$. If $Y = M_1 \cup_{T^2} M_2$, then

$$\dim \widehat{HF}(Y) = \dim HF_{\text{sym}}(\widehat{HF}(M_1), \widehat{HF}(M_2)) = |\widehat{HF}(M_1) \cap \widehat{HF}(M_2)|.$$

In particular, when $M = S^3 \setminus N(K)$, we can recover $\widehat{HF}(S^3_r(K))$ and $\widehat{HFK}(S^3_r(K), K_r)$ as follows, where K_r is the dual knot.
Immersed curves in the universal cover of $\partial M \cong T^2$

$$\dim \text{HFK}(T, i) = \begin{cases} \frac{1}{2} & z^2 = 1 \\ \frac{1}{2} & z^2 = -1 \\ \frac{1}{2} & z^2 = 0 \end{cases}$$

$$\dim \text{HFK}(S^3) = 1$$

$$\dim \text{HFK}(S^3(T)) = 1$$

$$\dim \text{HFK}(S^3(T), K_i, i) = \begin{cases} \frac{1}{2} & z^2 = 1 \\ \frac{1}{2} & z^2 = 0 \\ \frac{1}{2} & z^2 = -1 \end{cases}$$
Immersed curves in the universal cover of $\partial M \cong T^2$
Immersed curves in the universal cover of $\partial M \cong T^2$

\[
\hat{\mu} = -2\mu + \lambda \\
\hat{\lambda} = -\mu
\]

\[
-m + \hat{\lambda} = \mu - \lambda \\
-2\hat{\mu} + \hat{\lambda} = 3\mu - 2\lambda
\]
Immersed curves in the universal cover of $\partial M \cong T^2$

\[
\begin{align*}
\hat{\mu} &= -2\mu + \lambda \\
\hat{\lambda} &= -\mu \\
-\hat{\mu} + \hat{\lambda} &= \mu - \lambda \\
-2\hat{\mu} + \hat{\lambda} &= 3\mu - 2\lambda
\end{align*}
\]
Analogous constructions in instanton and Heegaard Floer theory

Note that all bypass maps are homogeneous with respect to Alexander gradings. Write Γ_n for some grading summand of $SHI(-M, -\Gamma_n)$.

Define $d_{1,+} = \psi_{+,-\mu}^{n} \circ \psi_{+,n}^{\mu}$; $d_{2,+} = \psi_{+,-\mu}^{n-1} \circ (\psi_{+,n}^{n-1})^{-1} \circ \psi_{+,n}^{\mu}$; $d_{r,+} = \psi_{+,-\mu}^{n-r+1} \circ (\psi_{+,n-r+2}^{n-r+1})^{-1} \circ \cdots \circ (\psi_{+,n}^{n-1})^{-1} \circ \psi_{+,n}^{\mu}$. Then We have

1. $d_{r,+}$ is independent of n
2. $d_{r_1,+} \circ d_{r_2,+} = 0$ for any $r_1, r_2 \geq 1$, hence $d_+^2 = (\sum_r d_{r,+})^2 = 0$
3. $d_{r,+}$ increases the Alexander grading by r
4. $H(SHI(-M, -\Gamma_\mu), d_+) \cong I^\#(-S^3)$
Immersed curves in the universal cover of $\partial M \cong T^2$
Indeed, we have two spectral sequences associated to $d_{r,+}$ and $d_{r,-}$. Set $n = m$. Then we can construct A_s as follows.
Step 1. Suppose $m >> 0$ and $\hat{\mu} = -m\mu + \lambda$. Then the slope of $\hat{\Gamma}_2$

$$-2\hat{\mu} + \hat{\lambda} = -2(-m\mu + \lambda) + (-\mu) = (2m - 1)\mu - 2\lambda$$

is large enough so that we can use 'middle Alexander gradings' of $SHI(-M, -\hat{\Gamma}_2)$ to recover the information of $I^\#(-S^3_{-m}(K), [s])$.
Sketch of the proof of the large surgery formula

Step 2. The bypass exact triangle induces a long exact sequence

$$\to \text{SHI}(-M, -\Gamma_m) \xrightarrow{\psi^{\mu,-m-1} \circ \psi^{+,\mu}} \text{SHI}(-M, -\Gamma_{m-1}) \to \text{SHI}(-M, -\hat{\Gamma}_2) \to$$
Sketch of the proof of the large surgery formula

Step 1. Suppose $m >> 0$ and $\hat{\mu} = -m\mu + \lambda$. Then the slope of $\hat{\Gamma}_2$

$$-2\hat{\mu} + \hat{\lambda} = -2(-m\mu + \lambda) + (-\mu) = (2m - 1)\mu - 2\lambda$$

is large enough so that we can use 'middle Alexander gradings' of $SHI(-M, -\hat{\Gamma}_2)$ to recover the information of $I^\#(-S^3_{-m}(K), [s])$.

Step 2. The bypass exact triangle induces a long exact sequence

$$\cdots \rightarrow SHI(-M, -\Gamma_m) \xrightarrow{\psi^\mu_{-m-1} \circ \psi^m_{+\mu}} SHI(-M, -\Gamma_{m-1}) \rightarrow SHI(-M, -\hat{\Gamma}_2) \rightarrow \cdots$$

Step 3. Use the octahedral axiom (TR 4) to prove isomorphisms $H(A_s) \xrightarrow{\text{TR4}} H(\text{Cone}(\psi^\mu_{-m-1} \circ \psi^m_{+\mu})) \xrightarrow{\text{Step2}} SHI(-M, -\hat{\Gamma}_2, s') \xrightarrow{\text{Step1}} I^\#(-S^3_{-m}(K), [-s])$.
Analogous constructions in instanton and Heegaard Floer theory

Further directions:

<table>
<thead>
<tr>
<th>Construction</th>
<th>Heegaard Floer</th>
<th>Instanton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homology</td>
<td>$SFH, \overline{HFK}, \overline{HF}$</td>
<td>$SHI, KHI, I^#$</td>
</tr>
<tr>
<td>Large surgery formula</td>
<td>Oszváth-Szabó '04</td>
<td>Li-Y. '21</td>
</tr>
<tr>
<td>Mapping cone formula</td>
<td>Oszváth-Szabó '08 '11</td>
<td>Li-Y. in preparation</td>
</tr>
<tr>
<td>Bordered Floer homology</td>
<td>Lipshitz-Oszváth-Thurston '08</td>
<td>???</td>
</tr>
<tr>
<td>Immersed curve invariants</td>
<td>Hanselman-Rasmussen-Watson '16 '18</td>
<td>???</td>
</tr>
</tbody>
</table>
Thanks for your attention.
Suppose X, Y, Z, X', Y', Z' are graded spaces. Then three long exact sequences about $f, g, g \circ f$ induce the fourth one about Z', Y', X'.

\[Z' = H(A_s) \]

\[Y = \Gamma_{m-1} \oplus \Gamma_{m-1} \]

\[Y' = \Gamma_m \]

\[X = \Gamma_{\mu} \]

\[X' = \Gamma_{m-1} \]

\[f = (\psi_{+,m-1}, \psi_{-,m-1}) \]

\[g = \mu_1 \]

\[g \circ f = \psi_{+,m-1} \]

\[\phi = \psi_{-,m-1} \circ \psi_{+,m} \]
Immersed curves in the universal cover of $\partial M \cong T^2$

Note: Fukaya category is also a triangulated category so also satisfies the octahedral axiom.
Analogous constructions in instanton and Heegaard Floer theory

<table>
<thead>
<tr>
<th>Construction</th>
<th>Heegaard Floer</th>
<th>Instanton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homology</td>
<td>$SFH, \widehat{HFK}, \widehat{HF}$</td>
<td>$SIH, KHI, I^#$</td>
</tr>
<tr>
<td>Minus version</td>
<td>Reconstruction of HFK^-\footnote{Etnyre-Vela-Vick-Zarev '17}</td>
<td>KHI^- Li '19</td>
</tr>
</tbody>
</table>
Analogous constructions in instanton and Heegaard Floer theory

Theorem (Etnyre-Vela-Vick-Zarev ’17)

The direct limit of the following system is isomorphic to $HFK^-(-S^3, K)$

$$SFH(-M, -\Gamma_{n-1}) \xrightarrow{\psi_{-,n}^{-1}} SFH(-M, -\Gamma_n) \xrightarrow{\psi_{-,n}^{n+1}} SFH(-M, -\Gamma_{n+1}) \xrightarrow{\psi_{-,n}^{n+2}}$$

The maps $\{\psi_{+,n-1}^n\}$ induce the U-action on $HFK^-(-S^3, K)$.

Definition (Li ’19)

Let $\text{KHI}^-(-S^3, K)$ be the direct limit of

$$SHI(-M, -\Gamma_{n-1}) \xrightarrow{\psi_{-,n}^{-1}} SHI(-M, -\Gamma_n) \xrightarrow{\psi_{-,n}^{n+1}} SHI(-M, -\Gamma_{n+1}) \xrightarrow{\psi_{-,n}^{n+2}}$$

Then the maps $\{\psi_{+,n-1}^n\}$ induce the U-action on $\text{KHI}^-(-S^3, K)$.

Moreover, we can replace $\Gamma_{n-1}, \Gamma_n, \Gamma_\mu$ by $\hat{\Gamma}_{n-1}, \hat{\Gamma}_n, \hat{\Gamma}_\mu$ to define $\text{KHI}^-(-S^3_{-m}(K), K_{-m})$ for the dual knot K_{-m}.
Analogous constructions in instanton and Heegaard Floer theory

Note that for $s \ll 0$, we have $HF^{-}(S^{3}, K, s) \cong \hat{HF}(-S^{3})$ and $HF^{-}(S^{3}_{m}(K), K_{-m}, s) \cong \hat{HF}(-S^{3}_{m}(K), [s - s_0])$ for some s_0.

Proposition (Li-Y. '20)

For $s \ll 0$, we have

$$\bigoplus_{k=1}^{m} \text{KHI}^{-}(S^{3}_{-m}(K), K_{-m}, s + k) \cong I^{#}(-S^{3}_{-m}(K)).$$

Hence we can define $I^{#}(-S^{3}_{-m}(K), [s + k])$ by $\text{KHI}^{-}(S^{3}_{-m}(K), K_{-m}, s + k)$.

Since the direct system to define KHI^{-} stabilizes for any fixed Alexander grading, we can also use 'middle gradings' of $SHI(-M, -\hat{\Gamma}_n)$ for any $n \gg 0$ to define the spinc-like decomposition of $I^{#}(-S^{3}_{-m}(K))$.
Diagram of the direct system

\[-\Gamma_{n-1} \quad -\Gamma_n \quad -\Gamma_{n+1} \]

\[\psi^{n-1}_{-,n} \quad \psi^n_{-,n+1} \]
Analogous constructions in instanton and Heegaard Floer theory

<table>
<thead>
<tr>
<th>Construction</th>
<th>Heegaard Floer</th>
<th>Instanton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homology</td>
<td>$SFH, \text{HFK}, \text{HF}$</td>
<td>$\text{SHI}, \text{KHI}, I^#$</td>
</tr>
<tr>
<td>Minus version</td>
<td>Reconstruction of HFK^-</td>
<td>KHI^- Li '19</td>
</tr>
<tr>
<td></td>
<td>Etnyre-Vela-Vick-Zarev '17</td>
<td></td>
</tr>
<tr>
<td>Decomposition</td>
<td>(torsion) spinc structures</td>
<td>along $H_1(M;\mathbb{Z}),$ Li-Y. '21</td>
</tr>
<tr>
<td>Euler characteristic</td>
<td>$\chi(SFH(M, \gamma)) = \tau(M, \gamma),$ Friedl-Juhász-Rasmussen '09, partial results by Oszváth-Szabó '04 '08</td>
<td>$\chi(SHI(M, \gamma)) = \tau(M, \gamma),$ Li-Y. '21, partial results by Lim '09, Kronheimer-Mrowka '10, Scaduto '15</td>
</tr>
</tbody>
</table>
Theorem (Li-Y. 21)

For a balanced sutured manifold \((M, \gamma)\) with \(H = H_1(M; \mathbb{Z})\), we have a (possibly noncanonical) decomposition \(SHI(M, \gamma) = \bigoplus_{h \in H} SHI(M, \gamma, h)\). Define the Euler characteristic

\[
\chi(SHI(M, \gamma)) = \sum_{h \in H} \chi(SHI(M, \gamma, h)) \cdot h \in \mathbb{Z}[H]/\pm H.
\]

Then we have \(\chi(SHI(M, \gamma)) = \chi(SFH(M, \gamma)) = \tau(M, \gamma) \in \mathbb{Z}[H]/\pm H\).

Remark

The decomposition associated to the nontorsion part of \(H\) comes from the Alexander grading, and the torsion part comes from the 'middle gradings' of \(\Gamma_n\) for \(n \gg 0\).